РЕШЕНИЕ
сделаем построение по условию
построим осевое сечение пирамиды ∆SMM1 , где M - середина ED ; M 1- середина AB
точка О - проекция высоты на основание ; центр отрезка ММ1 ; M1O=OM
М1М2 - высота ∆SMM1 на боковую сторону ; SM - это расстояние между прямыми SM и AB
апофема SM перпендикулярна стороне основания DE , в свою очередь DE || AB , следовательно
угол между прямыми SM и AB равен 90 град
длина апофемы по теореме Пифагора SM^2 = SE^2 - ME^2 = SE^2 - (DE/2)^2
SM = √ (13^2 - (10/2)^2) = √144 =12 см
∆BCD -равнобедренный BC=CD=10 см ; < BCD =120 град
по теореме косинусов BD^2 =BC^2+BD^2 -2*BC*BD*cosBCD =10^2+10^2-2*10*10*cos120=300 ; BD =10√3 см
MM1 = BD =10√3 см ; ОМ = M1M / 2 =10√3 /2 =5√3 см
по теореме Пифагора высота SO = √ (SM^2 - OM^2) = √ (12^2 -(5√3 )^2 ) =√69
запишем площадь сечения ∆SMM1 - двумя приравняем S
1/2 *M1M2*SM = 1/2*SO*M1M
M1M2*SM = SO*M1M
M1M2 = SO*M1M / SM = √69 * 10√3 / 12 = 5√23 / 2 см
ОТВЕТ расстояние =5√23/2 см ; угол =90 град
1) SinA= 12/x x= 12/0.3 =40так как пирамида правильная то AB и является той самой высотой по свойству скрещивающихся прямых BH перпендикулярна AH поэтому треугольник ABH прямоугольныйответ: высота = 40 2) Пусть сторона квадрата основания равна а, а высота пирамиды равна h.Тогда диагональ квадрата основания равна акор2, ее половина равна (акор2)/2Тогда тангенс угла между боковым ребром и основанием равен отношению высоты пирамиды к половине диагонали и равен:2h/(акор2) = кор2Отсюда 2h/а = 2Тангенс угла между боковой гранью и основанием равен отношению высоты пирамиды к половине стороны квадрата основания, т.е:h/(а/2) = 2h/а = 2.ответ:2
РЕШЕНИЕ
сделаем построение по условию
построим осевое сечение пирамиды ∆SMM1 , где M - середина ED ; M 1- середина AB
точка О - проекция высоты на основание ; центр отрезка ММ1 ; M1O=OM
М1М2 - высота ∆SMM1 на боковую сторону ; SM - это расстояние между прямыми SM и AB
апофема SM перпендикулярна стороне основания DE , в свою очередь DE || AB , следовательно
угол между прямыми SM и AB равен 90 град
длина апофемы по теореме Пифагора SM^2 = SE^2 - ME^2 = SE^2 - (DE/2)^2
SM = √ (13^2 - (10/2)^2) = √144 =12 см
∆BCD -равнобедренный BC=CD=10 см ; < BCD =120 град
по теореме косинусов BD^2 =BC^2+BD^2 -2*BC*BD*cosBCD =10^2+10^2-2*10*10*cos120=300 ; BD =10√3 см
MM1 = BD =10√3 см ; ОМ = M1M / 2 =10√3 /2 =5√3 см
по теореме Пифагора высота SO = √ (SM^2 - OM^2) = √ (12^2 -(5√3 )^2 ) =√69
запишем площадь сечения ∆SMM1 - двумя приравняем S
1/2 *M1M2*SM = 1/2*SO*M1M
M1M2*SM = SO*M1M
M1M2 = SO*M1M / SM = √69 * 10√3 / 12 = 5√23 / 2 см
ОТВЕТ расстояние =5√23/2 см ; угол =90 град
1) SinA= 12/x
x= 12/0.3 =40
так как пирамида правильная то AB и является той самой высотой
по свойству скрещивающихся прямых BH перпендикулярна AH поэтому треугольник ABH прямоугольный
ответ: высота = 40
2) Пусть сторона квадрата основания равна а, а высота пирамиды равна h.
Тогда диагональ квадрата основания равна акор2, ее половина равна (акор2)/2
Тогда тангенс угла между боковым ребром и основанием равен отношению высоты пирамиды к половине диагонали и равен:
2h/(акор2) = кор2
Отсюда 2h/а = 2
Тангенс угла между боковой гранью и основанием равен отношению высоты пирамиды к половине стороны квадрата основания, т.е:
h/(а/2) = 2h/а = 2.
ответ:2