В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
theodoorka
theodoorka
19.08.2022 23:21 •  Геометрия

РАЗОБРАТЬСЯ Продолжение биссектрисы угла B треугольника ABC пересекает описанную окружность в точке M; O — центр вписанной окружности, Ob — центр вневписанной окружности, касающейся стороны AC. Докажите, что точки A, C, O и Ob лежат на окружности с центром M.​

Показать ответ
Ответ:
kristinavasina1
kristinavasina1
15.10.2020 15:13

Центр вписанной окружности (O) - пересечение биссектрис внутренних углов.

Центр вневписанной окружности (Ob) - пересечение биссектрис внешних углов.  

Поскольку центр Ob лежит на биссектрисах внешних углов A и С, он равноудален от прямых AB, AC, BC, следовательно лежит на биссектрисе угла B.  

Биссектрисы внешнего и внутреннего углов перпендикулярны (сумма смежных углов 180, сумма их половин 90).  

В четырехугольнике AOCOb противоположные углы прямые (сумма 180), следовательно он вписанный, OOb - диаметр.  

Пусть M - середина OOb, центр описанной окружности AOCOb.

AMC =∪AO+∪CO =2ACO +2CAO =A+C

В четырехугольнике ABCM внешний угол равен внутреннему при противолежащей вершине, следовательно четырехугольник вписанный.

То есть M лежит на описанной окружности ABC.


РАЗОБРАТЬСЯ Продолжение биссектрисы угла B треугольника ABC пересекает описанную окружность в точке
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота