Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами равны, то треугольники подобны.
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ . Доказать: ΔАВС подобен ΔА₁В₁С₁. Доказательство: Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) . Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках: АВ₂ : А₁В₁ = АС : А₁С₁. Сравним полученную пропорцию с данной в условии: АВ : А₁В₁ = АС : А₁С₁ Значит, АВ₂ = АВ. Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию). Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит ΔАВС подобен ΔА₁В₁С₁. Доказано.
1. По первому признаку подобия треугольников будут подобны любые два .(?) треугольника.
I. Признак подобия треугольников по двум углам. Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны. Так как острые углы равнобедренных прямоугольныхтреугольников равны 45º, то по этому признаку подобны: 5. любые два равнобедренных прямоугольных треугольника .---------------- 2.Треугольники АВС и AMN - равнобедренные. Периметр треугольника AMN равен 320 см, АВ=16 см, АМ=80 см. Найдите площадь треугольника АВС. Задача не совсем корректна. Приходится по теме вопроса догадываться, что данные треугольники подобны. В треугольнике АМN сторона АМ=80. Из неравенства треугольников следует, что только АМ может быть основанием этого треугольника, и АN=МN=(320-80):2=120 Тогда Вариант 1) АВ=16- основание меньшего треугольника k=АМ:АВ=80:16=5 ВС=АС=120:5=24 Высоту СН ∆ АВС найдем по т.Пифагора: СН=√(ВС²-ВН²)=√512=16√2 Ѕ∆ АВС=ВН*СН=8*16√2=128√2 см² или ≈181,02 см² Вариант 2) АВ=16 - боковая сторона меньшего треугольника. Тогда k=AM:BC=120:16=7,5 АС=80:7,5=32/3 Тогда СН=АС:2=16/3 Высота ВН=√(BC² -CH²)=√(9*256-256):9)=√(8*256:9)=√(2*4*256:3)=(32√2)/3 S ∆АВС=ВН*СН=(32√2)/3)*16/3 S ∆АВС=(32*16√2)/9 см² или ≈ 80,453 см²
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ .
Доказать: ΔАВС подобен ΔА₁В₁С₁.
Доказательство:
Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) .
Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках:
АВ₂ : А₁В₁ = АС : А₁С₁.
Сравним полученную пропорцию с данной в условии:
АВ : А₁В₁ = АС : А₁С₁
Значит, АВ₂ = АВ.
Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию).
Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит
ΔАВС подобен ΔА₁В₁С₁.
Доказано.
I. Признак подобия треугольников по двум углам.
Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
Так как острые углы равнобедренных прямоугольныхтреугольников равны 45º, то по этому признаку подобны:
5. любые два равнобедренных прямоугольных треугольника
.----------------
2.Треугольники АВС и AMN - равнобедренные. Периметр треугольника AMN равен 320 см, АВ=16 см, АМ=80 см. Найдите площадь треугольника АВС.
Задача не совсем корректна. Приходится по теме вопроса догадываться, что данные треугольники подобны.
В треугольнике АМN сторона АМ=80. Из неравенства треугольников следует, что только АМ может быть основанием этого треугольника, и АN=МN=(320-80):2=120
Тогда
Вариант 1)
АВ=16- основание меньшего треугольника
k=АМ:АВ=80:16=5
ВС=АС=120:5=24
Высоту СН ∆ АВС найдем по т.Пифагора:
СН=√(ВС²-ВН²)=√512=16√2
Ѕ∆ АВС=ВН*СН=8*16√2=128√2 см² или ≈181,02 см²
Вариант 2)
АВ=16 - боковая сторона меньшего треугольника.
Тогда k=AM:BC=120:16=7,5
АС=80:7,5=32/3
Тогда СН=АС:2=16/3
Высота ВН=√(BC² -CH²)=√(9*256-256):9)=√(8*256:9)=√(2*4*256:3)=(32√2)/3
S ∆АВС=ВН*СН=(32√2)/3)*16/3
S ∆АВС=(32*16√2)/9 см² или ≈ 80,453 см²