решить:
1. Найдите указанные углы и отрезки по рисунку. Запишите только краткий ответ по образцу: 1) ∠ ABC = 2) AB = 3) BH =
2. Докажите равенство треугольников ABE и CDE на рисунке.
3. Постройте треугольник DEF, если DE = 5 см, DF = 3 см, ∠D = 90°. Измерьте по линейке, транспортиру и запишите длину стороны EF, градусные меры ∠E, ∠F.
4. В треугольнике DAB известно, что ∠A = 90°, ∠D = 30°, отрезок BT - биссектриса треугольника. Найдите катет DA, если DT = 8 см.
1
Объяснение:
1) Докажем, что данный четырёхугольник является прямоугольником.
Согласно условию задачи:
углы при нижнем основании - прямые;
4 угла при верхнем основании равны между собой и равны:
180 : 4 = 45°, в силу чего наклонные прямые являются биссектрисами верхних углов, а каждый из них равен:
45 + 45 = 90°.
В прямоугольнике противоположные стороны равны.
Следовательно, нижнее основание четырёхугольника равно 11.
2) Биссектрисы прямых углов делят их на 2 равных угла, каждый по 45°; следовательно, треугольники, прилегающие к боковым сторонам, является равнобедренными, и их нижние стороны равны 6.
3) Общая длина оснований этих треугольников составляет:
6 + 6 = 12
4) Полагая, что точки х и у, принадлежат нижней стороне прямоугольника, найдём расстояние между ними:
12 - 11 = 1
ответ: 1
Проекции катетов на гипотенузу - отрезки гипотенузы, полученные в результате проведения высоты к гипотенузе.
Проще говоря, проведи высоту к гипотенузе. Отрезки, на которые поделила эта высота гипотенузу и будут проекциями катетов на гипотенузу.
Итак, высота прямоугольного треугольника, проведённая к гипотенузе равна квадратному корню из произведения проекций катетов на гипотенузу.
Высота, проведённая к гипотенузе (проведённая из вершины прямого угла =
\sqrt{2 cm*8cm} =\sqrt{16 cm^{2} } = 4 cm
2cm∗8cm
=
16cm
2
=4cm
ответ: 4 см.
(Если что-то не понятно, то спрашивайте.)