Дано:
∆АВС - прямоугольный.
ВЕ - биссектриса.
∠А = 30°
ВЕ = 6 см
Найти:
∠ВЕА; СЕ; АС
Решение.
Сумма углов прямоугольного треугольника равна 90°
=> ∠В = 90 - 30 = 60°
Если угол прямоугольного треугольника равен 30°, то напротив лежащий катет равен половине гипотенузы.
=> ВС = 1/2АВ
∠ЕВА = ∠ЕВС = 60 ÷ 2 = 30° (т.к. ВЕ - биссектриса)
=> СЕ = 1/2ВЕ = 6 ÷ 2 = 3 см.
Сумма острых углов прямоугольного треугольника равна 90°
=> ∠ВЕС = 90 - 30 = 60°
СУММА СМЕЖНЫХ УГЛОВ РАВНА 180°
=> ∠ВЕА = 180 - 60 = 120°
∠В = ∠А = 30°
=> ∆АЕВ - равнобедренный.
=> ЕВ = ЕА = 6 см, по свойству равнобедренного треугольника.
СА = 3 + 6 = 9 см
ответ: 120°; 9 см; 3 см.
Дано:
∆АВС - прямоугольный.
ВЕ - биссектриса.
∠А = 30°
ВЕ = 6 см
Найти:
∠ВЕА; СЕ; АС
Решение.
Сумма углов прямоугольного треугольника равна 90°
=> ∠В = 90 - 30 = 60°
Если угол прямоугольного треугольника равен 30°, то напротив лежащий катет равен половине гипотенузы.
=> ВС = 1/2АВ
∠ЕВА = ∠ЕВС = 60 ÷ 2 = 30° (т.к. ВЕ - биссектриса)
Если угол прямоугольного треугольника равен 30°, то напротив лежащий катет равен половине гипотенузы.
=> СЕ = 1/2ВЕ = 6 ÷ 2 = 3 см.
Сумма острых углов прямоугольного треугольника равна 90°
=> ∠ВЕС = 90 - 30 = 60°
СУММА СМЕЖНЫХ УГЛОВ РАВНА 180°
=> ∠ВЕА = 180 - 60 = 120°
∠В = ∠А = 30°
=> ∆АЕВ - равнобедренный.
=> ЕВ = ЕА = 6 см, по свойству равнобедренного треугольника.
СА = 3 + 6 = 9 см
ответ: 120°; 9 см; 3 см.
По теореме о сумме углов треугольника имеем:
Угол А + угол В + угол С = 180 градусов;
44 градуса + угол В + 90 градусов = 180 градусов;
угол В = 180 градусов-44градуса-90градусов=46 градусов.
По теореме синусов имеем: АС/sinB=AB/sinC; 15/sin46 = AB/sin90 АВ=15*sin90/sin46=15*1/0.7193=приблизительно 20