Дано: трапеция АВСД, где ВС – меньшее основание. АВ=ВС=СД. Из т.В опустили высоту ВЕ к стороне АД. Точка О – пересечение ВЕ и АС. ВО=10, ОЕ=8.
1) 1) Пусть ВС=х, тогда АВ=х. Из треугольника АВЕ: АЕ^2=AB^2-BE^2=x^2-(10+8)^2=x^2-324
2) 2) Треугольники АОЕ и ВОС подобны по 2-м углам (углы АОЕ и ВОС равны как вертикальные; углы ОАЕ и ОСВ равны как накрест лежащие при 2-х параллельных прямых), тогда АЕ:ВС=ОЕ:ОВ. Отсюда АЕ=ВС*ОЕ/ОВ=х*8/10. Значит АЕ^2=x^2*64/100
3) 3) Подставим уравнение из п.2 в п.1: x^2-324= x^2*64/100. Отсюда х=30
1) Условие: даны 2 стороны (данных размеров) и угол между ними. Допустим, угол А, стороны АB, AD. Построение : При транспортира в точке B от AB откладываем угол 180 - A. После этого на этом углу откладываем BC длиной = AD. Потом соединяем точки C и D. 2) Условие : Есть 3 точки A B C. Построение : Примем, что B - начальный угол параллелограмма. Соединяем AB и BC. Теперь задача схожа с предыдущей (т.к. угол мы можем померить). Вариаций параллеллограмма может быть 3 (т.к. за начальный угол мы можем взять и А и B и С и в каждый раз у нас будут разные параллелограммы) 3) Построение : От вершины D откладываем угол D равный углу А (чтобы он были симметричен А) и откладываем DC равную AB. Потом соединяем B и C
Дано: трапеция АВСД, где ВС – меньшее основание. АВ=ВС=СД. Из т.В опустили высоту ВЕ к стороне АД. Точка О – пересечение ВЕ и АС. ВО=10, ОЕ=8.
1) 1) Пусть ВС=х, тогда АВ=х. Из треугольника АВЕ: АЕ^2=AB^2-BE^2=x^2-(10+8)^2=x^2-324
2) 2) Треугольники АОЕ и ВОС подобны по 2-м углам (углы АОЕ и ВОС равны как вертикальные; углы ОАЕ и ОСВ равны как накрест лежащие при 2-х параллельных прямых), тогда АЕ:ВС=ОЕ:ОВ. Отсюда АЕ=ВС*ОЕ/ОВ=х*8/10. Значит АЕ^2=x^2*64/100
3) 3) Подставим уравнение из п.2 в п.1: x^2-324= x^2*64/100. Отсюда х=30
4) 4) Тогда АЕ^2=30^2-324=576. Отсюда АЕ=24
5) 5) АД=ВС+2*АЕ=30+2*24=78
6) 6) S=1/2*(ВС+АД)*ВЕ=1/2*(30+78)*18=972
Построение : При транспортира в точке B от AB откладываем угол 180 - A. После этого на этом углу откладываем BC длиной = AD. Потом соединяем точки C и D.
2) Условие : Есть 3 точки A B C.
Построение : Примем, что B - начальный угол параллелограмма. Соединяем AB и BC. Теперь задача схожа с предыдущей (т.к. угол мы можем померить). Вариаций параллеллограмма может быть 3 (т.к. за начальный угол мы можем взять и А и B и С и в каждый раз у нас будут разные параллелограммы)
3) Построение : От вершины D откладываем угол D равный углу А (чтобы он были симметричен А) и откладываем DC равную AB. Потом соединяем B и C