Объяснение:
{ AM - MB = 7
{ MB = AM\2
=>
AM - (AM\2) = 7 > 2AM - AM = 14 >
AM = 7 и
MB = AM\2 = 7\2 = 3,5
11) AM =MB = AB > L A = L M = L B = 180\3 = 60 град.
AM = MB и MD _|_ AB > L AMD = L M\2 = 60\2 = 30 град. =>
DM = 2 * DE = 2 * 4 = 8
14) AKM = AEM, так как L MAK = L MAE и L AKM = L AEM =>
и L AMK = L AME => треугольники подобны по трем углам, а равны, так как гипотенуза АМ общая =>
KM = EM = 13
15) L CMB = 180 - (L C + L CBM) = 180 - (70 + 40) = 70 град.
L BMD = 180 - (L MBD + L MDB) = 180 - (40 + 90) = 50 град.
L AMD = 180 - (L CMB + L BMD) = 180 - (70 + 50) = 60 град. =>
MD = AM\2 = 14\2 = 7 Незнаю наверное правильно
Доказано, отметьте ответ как лучший
1. <A = <C = 70° ( внутренние противолежащие углы в параллелограмме равны )
AB = CD, AD = BC, <A = <C
∆ABD = ∆BCD ( по свойству СУС, сторона угол сторона)
2. а) <CAD = <CAB, AD = AB, AC - общая сторона
∆ADC = ∆ABC (СУС)
б) BC = DC (из предыдущего доказательства)
тогда ∆CBD - равнобедренный, тогда CF - высота, биссектриса и медиана (свойство равнобедренного треугольника)
тогда <FCB = <FCD
FC - общая сторона
∆BFC = ∆DFC (СУС)
3. AB = BC (по условию)
тогда ∆ABC - равнобедренный, и BO - биссектриса
=> <ABO = <CBO
BO - общая сторона
=> ∆ABO = ∆CBO
тогда AO = CO
а угол AOE = углу COE = 90°
сторона OE - общая
тогда ∆AOE = ∆COE (сторона угол сторона)
надеюсь и заслуживаю лайк
Объяснение:
{ AM - MB = 7
{ MB = AM\2
=>
AM - (AM\2) = 7 > 2AM - AM = 14 >
AM = 7 и
MB = AM\2 = 7\2 = 3,5
11) AM =MB = AB > L A = L M = L B = 180\3 = 60 град.
AM = MB и MD _|_ AB > L AMD = L M\2 = 60\2 = 30 град. =>
DM = 2 * DE = 2 * 4 = 8
14) AKM = AEM, так как L MAK = L MAE и L AKM = L AEM =>
и L AMK = L AME => треугольники подобны по трем углам, а равны, так как гипотенуза АМ общая =>
KM = EM = 13
15) L CMB = 180 - (L C + L CBM) = 180 - (70 + 40) = 70 град.
L BMD = 180 - (L MBD + L MDB) = 180 - (40 + 90) = 50 град.
L AMD = 180 - (L CMB + L BMD) = 180 - (70 + 50) = 60 град. =>
MD = AM\2 = 14\2 = 7 Незнаю наверное правильно
Доказано, отметьте ответ как лучший
Объяснение:
1. <A = <C = 70° ( внутренние противолежащие углы в параллелограмме равны )
AB = CD, AD = BC, <A = <C
∆ABD = ∆BCD ( по свойству СУС, сторона угол сторона)
2. а) <CAD = <CAB, AD = AB, AC - общая сторона
∆ADC = ∆ABC (СУС)
б) BC = DC (из предыдущего доказательства)
тогда ∆CBD - равнобедренный, тогда CF - высота, биссектриса и медиана (свойство равнобедренного треугольника)
тогда <FCB = <FCD
FC - общая сторона
∆BFC = ∆DFC (СУС)
3. AB = BC (по условию)
тогда ∆ABC - равнобедренный, и BO - биссектриса
=> <ABO = <CBO
BO - общая сторона
=> ∆ABO = ∆CBO
тогда AO = CO
а угол AOE = углу COE = 90°
сторона OE - общая
тогда ∆AOE = ∆COE (сторона угол сторона)
надеюсь и заслуживаю лайк