Определение : Трапеция — четырехугольник, у которого две стороны параллельны. (Как правило, в определении указывается, что две другие не параллельны) Параллельные стороны называются основаниями трапеции, две другие — боковыми сторонами.
Сумма односторонних внутренних углов, образующихся при пересечении двух параллельных прямых третьей (секущей ) прямой, равна 180°. Если один угол острый, второй дополняет его до 180° и поэтому больше прямого. Следовательно, два внутренних угла при боковой стороне трапеции могут быть либо равными по 90°, либо острым и тупым. Если как частный случай трапеции рассматривать прямоугольник, то прямыми могут быть все её углы.
ответ: у трапеции не может быть ни трёх прямых углов, ни трёх острых.
Пусть данный катет АС, угол - А На произвольной прямой m отложим отрезок, равный длине катета АС. Обозначим его концы А и С. На сторонах заданного угла А циркулем радиуса=АС с центром в т.А сделаем насечки. Обозначим их О и М. Соединим О и М. Из т. А построенного на m катета проведем тем же раствором циркуля полуокружность. Циркулем измерим ОМ и из т.С отложим полуокружность до пересечения с первой в т.К. АС=АМ, АК=АО, отрезок СК равен отрезку ОМ, ⇒ ∆ АКС=∆ АОМ. Следовательно, угол КАС равен заданному. Катет и прилежащий к нему угол построены. На равном расстоянии по обе стороны от С отметим на прямой m т.1 и т.2. Из этих точек, как из центров, начертим полуокружности так, чтобы они пересеклись по обе стороны от прямой m. Точки пересечения соединим. Построен перпендикуляр к прямой m через т. С ( это стандартный построения перпендикуляра, и он наверняка Вам знаком). Точку пересечения перпендикуляра с другой стороной угла А обозначим В. Искомый треугольник АВС по катету АС и прилежащему углу А построен.
ответ:ответ: не может.
Определение : Трапеция — четырехугольник, у которого две стороны параллельны. (Как правило, в определении указывается, что две другие не параллельны) Параллельные стороны называются основаниями трапеции, две другие — боковыми сторонами.
Сумма односторонних внутренних углов, образующихся при пересечении двух параллельных прямых третьей (секущей ) прямой, равна 180°. Если один угол острый, второй дополняет его до 180° и поэтому больше прямого. Следовательно, два внутренних угла при боковой стороне трапеции могут быть либо равными по 90°, либо острым и тупым. Если как частный случай трапеции рассматривать прямоугольник, то прямыми могут быть все её углы.
ответ: у трапеции не может быть ни трёх прямых углов, ни трёх острых.
Объяснение:
На произвольной прямой m отложим отрезок, равный длине катета АС.
Обозначим его концы А и С.
На сторонах заданного угла А циркулем радиуса=АС с центром в т.А сделаем насечки. Обозначим их О и М.
Соединим О и М.
Из т. А построенного на m катета проведем тем же раствором циркуля полуокружность.
Циркулем измерим ОМ и из т.С отложим полуокружность до пересечения с первой в т.К.
АС=АМ, АК=АО, отрезок СК равен отрезку ОМ, ⇒ ∆ АКС=∆ АОМ. Следовательно, угол КАС равен заданному.
Катет и прилежащий к нему угол построены.
На равном расстоянии по обе стороны от С отметим на прямой m т.1 и т.2.
Из этих точек, как из центров, начертим полуокружности так, чтобы они пересеклись по обе стороны от прямой m.
Точки пересечения соединим. Построен перпендикуляр к прямой m через т. С ( это стандартный построения перпендикуляра, и он наверняка Вам знаком).
Точку пересечения перпендикуляра с другой стороной угла А обозначим В.
Искомый треугольник АВС по катету АС и прилежащему углу А построен.