Периметр треугольника равен сумме длин всех трех сторон, т. к. треугольник равносторонний, то каждая из сторон равна 6/3=2. Высота равностороннего прямоугольника делит его на два равных прямоугольных треугольника. Гипотенуза получившегося прямоугольного треугольника равна стороне исходного (равностороннего треугольника) =2. Один из катетов получившегося треугольника = высоте, другой=2/2.По теореме Пифагора находим неизвестный катет (высоту исходного треугольника) =корень квадратный из (2*2+1*1)=корень квадратный из (3).Высота равна корень квадратный из (3)
Для начала найдём все углы: <A - <B/2; <B = <C-30.
Объявим угол <A — как переменную "x", угол B объявим как: 2x, угол C объявим как: 2x+30.
<A = x
<B = 2x
<C = 2x+30
x+2x+2x+30 = 180°
5x+30 = 180°
5x = 150° ⇒ x = 150/5 = 30° ⇒ <A = 30°
<B = 30*2 = 60°
<C = <B+30 = 90°.
Как мы видим, наш треугольник ABC — прямоугольный, так как имеет один прямой угол(<C).
AB — гипотенуза, известный нам катет — BC.
Катет BC — лежит напротив угла A(30°).
Теорема 30-градусного угла в прямоугольном треугольнике такова: катет, протолежащий углу 30-и градусов в прямоугольном треугольнике — равен половине гипотенузы.
Тоесть: BC = AB/2; BC = 2 ⇒ AB = 2*2 = 4.
Вывод: AB = 4.