KM и KN отрезки касательных проведёных из точки K к окружности с центром О Найдите KM и KN если ОК=12см, А УГОЛ МОN =
Построим радиусы ОМ и ОН. Так как КМ и КН касательные проведенные из одной точки, то КМ = КН. Радиусы ОМ и ОН, проведенные к точкам касания, перпендикулярны самим касательным.
Тогда треугольники КМО и КНО равны по двум катетам, а значит угол МОК = НОК = МОН / 2 = 120 / 2 = 600. Угол ОКМ = ОКН = 90 – 60 = 300.
Катеты ОН и ОМ лежат против угла 300, тогда ОМ = ОН 120 / 2 = 60 см.
По теореме Пифагора, КМ2 = ОК2 – ОМ2 = 14400 – 3600 = 10800.
Сума внутрішніх кутів чотирикутника дорівнює 360°. Нехай міра меншого кута дорівнює х°, тоді інші кути чотирикутника мають міру 2х°, Зх" та 4х°. Розв'язуємо рівняння х + 2х + Зх + 4х = 360; 10х = 360; х - 36. Отже, кути чотирикутника мають міру 36°, 72", 108° та 144°;
а) Якщо менший кут чотирикутника має міру х°, то, згідно умові, інші кути мають міру 2х", 2х° та 13зг°. Отримуємо рівняння: х + 2х + 2х + 13х = 360; 18х = 360; х = 20. Отже, кути чотирикутника мають міру 20°, 40°, 40° та 260°. Оскільки найбільший кут чотирикутника більший від розгорнутого, то даний чотирикутник — не опуклий.
Войти
АнонимГеометрия19 декабря 14:44
KM и KN отрезки касательных проведёных из точки K к окружности с центром О Найдите KM и KN если ОК=12см, А УГОЛ МОN =
Построим радиусы ОМ и ОН. Так как КМ и КН касательные проведенные из одной точки, то КМ = КН. Радиусы ОМ и ОН, проведенные к точкам касания, перпендикулярны самим касательным.
Тогда треугольники КМО и КНО равны по двум катетам, а значит угол МОК = НОК = МОН / 2 = 120 / 2 = 600. Угол ОКМ = ОКН = 90 – 60 = 300.
Катеты ОН и ОМ лежат против угла 300, тогда ОМ = ОН 120 / 2 = 60 см.
По теореме Пифагора, КМ2 = ОК2 – ОМ2 = 14400 – 3600 = 10800.
КМ = КТ = 60 * √3 см.
ответ: Длина отрезков КМ и КТ равна 60 * √3 см.
Сума внутрішніх кутів чотирикутника дорівнює 360°. Нехай міра меншого кута дорівнює х°, тоді інші кути чотирикутника мають міру 2х°, Зх" та 4х°. Розв'язуємо рівняння х + 2х + Зх + 4х = 360; 10х = 360; х - 36. Отже, кути чотирикутника мають міру 36°, 72", 108° та 144°;
а) Якщо менший кут чотирикутника має міру х°, то, згідно умові, інші кути мають міру 2х", 2х° та 13зг°. Отримуємо рівняння: х + 2х + 2х + 13х = 360; 18х = 360; х = 20. Отже, кути чотирикутника мають міру 20°, 40°, 40° та 260°. Оскільки найбільший кут чотирикутника більший від розгорнутого, то даний чотирикутник — не опуклий.