Компоненты векторов:
AB = (-2-3;0-6,5-2) = (-5;-6,3)
AC = (-4-3;5-6,9-2) = (-7;1,7)
С одной стороны скалярное произведение пары векторов AB и AC
s = |AB|*|AC|*cos(a), где a - искомый угол между ними, а длины векторов можно определить через корень из суммы из координатных компонент:
|AB| = корень((-5)^2+(-6)^2+3^2) = корень(25+36+9) = корень(70)
|AС| = корень((-7)^2+(-1)^2+7^2) = корень(49+1+49) = корень(99)
то есть
s = корень(70)*корень(99)*cos(a)
или
cos(a) = s/корень(70*99)
А с другой - скалярное произведения векторов заданных координатами нетрудно определить суммой произведения их координатных компонент:
s = -5*(-7) + (-6)*1 + 3*7 = 35-6+21 = 50
Таким образом искомый угол
a = arccos(50/корень(70*99)) или примерно arccos(0.6) или около 53 градусов
• В основаниях правильной треугольной призмы лежат правильные треугольники ( тр. АВС = тр. А1В1С1 - равносторонние ). У прямой призмы рёбра равны, перпендикулярны основаниям, параллельны друг другу.
• В сечении правильной треугольной призмы находится равнобедренная трапеция ( DP || KL , KD = LP ).
• DP - средняя линия тр. А1В1С1
DP = ( 1/2 ) • A1C1 = ( 1/2 ) • 15,7 = 15,7 / 2 см.
KL = A1C1 = 15,7 см
• Проведём в тр. А1В1С1 высоту В1Н на А1С1.
В1Н = А1С1•\/3 / 2 = ( 15,7 • \/3 ) / 2 см
НN = ( 1/2 ) • B1H = ( 15,7 • \/3 ) / 4 см
• Рассмотрим тр. МНN (угол МНN = 90°):
cos MNH = HN / MN
cos 30° = ( 15,7 • \/3 ) / 4 : MN
MN = 15,7 / 2 см
• Площадь трапеции KDPL равна:
S = ( 1/2 ) • ( DP + KL ) • MN = ( 1/2 ) • ( 15,7 / 2 + 15,7 ) • 15,7 / 2 = ( 47,1 • 15,7 ) / 8 = 92,43375 см^2
ОТВЕТ: 92,43375 см^2
__________________________
Компоненты векторов:
AB = (-2-3;0-6,5-2) = (-5;-6,3)
AC = (-4-3;5-6,9-2) = (-7;1,7)
С одной стороны скалярное произведение пары векторов AB и AC
s = |AB|*|AC|*cos(a), где a - искомый угол между ними, а длины векторов можно определить через корень из суммы из координатных компонент:
|AB| = корень((-5)^2+(-6)^2+3^2) = корень(25+36+9) = корень(70)
|AС| = корень((-7)^2+(-1)^2+7^2) = корень(49+1+49) = корень(99)
то есть
s = корень(70)*корень(99)*cos(a)
или
cos(a) = s/корень(70*99)
А с другой - скалярное произведения векторов заданных координатами нетрудно определить суммой произведения их координатных компонент:
s = -5*(-7) + (-6)*1 + 3*7 = 35-6+21 = 50
Таким образом искомый угол
a = arccos(50/корень(70*99)) или примерно arccos(0.6) или около 53 градусов