Сума величин кутів трикутника АОВ, що створюють діагоналі та одна сторона прямокутника завжди дорівнює 180 градуса, тобто:АВО+ВОА+ОАВ=180Гр.А і В є вершинами протилежних кутів пряокутника, що прилягають до однієї сторони. Отже у прямокутнику дані кути будуть однакові, тобто величина кута АВО=величині кута ВАО=30градусам. Звідси 180-30-30=120градусів -величина кута АОВ, що є кутом між діагоналяи прямокутника.
ДОДАТКОВО:Отже ми маємо два протилежні кути по 120гр. Сума величини кутів прямокутника становить 360 гр.Причому величини протележних кутів однакові. Маємо 360-120-120=120. 120/2=60. маємо кути: АОВ=СОД=120гр. ВОС=ДОА=60гр.
Треугольники ADC и CDB подобны по двум углам (<DCА=<CВА = половине градусной меры дуги АС согласно теоремам об углах вписанном - АВС и между касательной и хордой - DCA, а <D у них общий).
Из подобия имеем: АС/ВС=DC/BD=AD/DC=10/18 =5/9 (по теореме о биссектрисе угла, делящей противоположную сторону в отношении прилежащих сторон - АС/ВС=АМ/МВ).
Сума величин кутів трикутника АОВ, що створюють діагоналі та одна сторона прямокутника завжди дорівнює 180 градуса, тобто:АВО+ВОА+ОАВ=180Гр.А і В є вершинами протилежних кутів пряокутника, що прилягають до однієї сторони. Отже у прямокутнику дані кути будуть однакові, тобто величина кута АВО=величині кута ВАО=30градусам. Звідси 180-30-30=120градусів -величина кута АОВ, що є кутом між діагоналяи прямокутника.
ДОДАТКОВО:Отже ми маємо два протилежні кути по 120гр. Сума величини кутів прямокутника становить 360 гр.Причому величини протележних кутів однакові. Маємо 360-120-120=120. 120/2=60. маємо кути: АОВ=СОД=120гр. ВОС=ДОА=60гр.
Треугольники ADC и CDB подобны по двум углам (<DCА=<CВА = половине градусной меры дуги АС согласно теоремам об углах вписанном - АВС и между касательной и хордой - DCA, а <D у них общий).
Из подобия имеем: АС/ВС=DC/BD=AD/DC=10/18 =5/9 (по теореме о биссектрисе угла, делящей противоположную сторону в отношении прилежащих сторон - АС/ВС=АМ/МВ).
Тогда из этих соотношений:
DC=(9/5)*AD (1)
DC=(5/9)*BD (2).
АВ=28 (дано), AD = BD-AB = ВD-28.
Приравняем (1) и (2):
(9/5)*(ВD-28)=(5/9)*BD
BD(9/5-5/9)=28*9/5 =>
BD*56/45 = 28*81/45 =>
BD = 28*81/56 = 81/2 = 40,5 ед.
Тогда из (2): СD=(5/9)*BD = 22,5 ед.