РЕШИТЬ ГЕОМЕТРИЮ КЛАСС
На рисунке 1 АD = DС; ЕD = DF; ∠1 = ∠2 = 90°. 1.Докажите,что треугольник АВС равнобедренный. ( доказывать , используя признаки равенства прямоугольных треугольников)
2. Один из углов прямоугольного треугольника равен 60°, а сумма гипотенузы и меньшего катета равна 18 см. Найдите гипотенузу и меньший катет.
3. На рисунке 2 ∠1 = ∠2, ∠3 = ∠4 = 90°; ВD = DС. Докажите, что треугольник АВС равнобедренный. ( доказывать , используя признаки равенства прямоугольных треугольников)
4. Один из острых углов прямоугольного треугольника в два раза меньше другого, а разность гипотенузы и меньшего катета равна 15 см. Найдите гипотенузу и меньший катет.
Найдем сторону этого квадтара (ребро при основании)
АВ = √18 = 3√2 см
ВД1 - диагональ призмы.
Найдем ВД - диагональ основания
ВД = 3√2 * √2 = 6 см
Так как диагональ ВД1 наклонена к плоскости основания по углом 45, то треуг. ВВ1Д1 прямоугольный и равнобедренный. Высота призмы ВВ1 = ВД = 6 см.
Площадь боковой поверхности цилиндра, описаного около призмы равна произведению длины окружности в основании на высоту цилиндра.
Высота цилиндра равна высоте призмы, т.е. 6 см.
Диаметром окружности является диагональ основания призмы ВД.
S (боковое) = П * 6 * 6 = 36*П см.
Висоти паралелограма дорівнюють 5 см і 6 см, а сума двох його суміжних сторін - 22 см. Знайдіть площу паралелограма.
Высоты параллелограмма равны 5 см и 6 см, а сумма двух его смежных сторон - 22 см. Найдите площадь параллелограмма.
Пусть длина одной из неравных сторон параллелограмма x см ;
длина другой стороны будет (22-x) см .
Можем написать уравнение x*5 =(22-x)6 || =S ||
5x =22*6 - 6x ;
5x +6x =22*6 ;
11x =22*6 ;
x = 22*6 /11= 2*6 =12 (см). [ так и должно быть x > 22/2 =11 ; 12 > 11 ]
S =x*5 = 12*5 = 60 (см²)
ответ: 60 см² .
! 5a = 6b [ очевидно a > b ] a /b = 6/5
ah₁ =bh₂ ; a/b = =h₂/ h₁ обратная пропорциональность