Вспоминаем свойство диагоналей прямоугольника: Диагонали прямоугольника пересекаются и в точке пересечения делятся пополам. Значит ΔАОД и ΔВОА - равнобедренные, и ∠ОВА=∠ОАВ, ∠ОАД=∠ОДА=90°-50°=40° АЕ=ЕВ, т. к. по условию Е - середина АВ. То есть в ΔВОА ОЕ - медиана. Далее вспоминаем следующее свойство равнобедренного треугольника: Биссектриса, медиана и высота, проведённые к основанию, совпадают между собой. Таким образом ОЕ⊥АВ и ДА⊥АВ, то есть ДА параллельна ОЕ, ∠ОДА+∠ЕОД=180°, как сумма односторонних углов, значит: ∠ЕОД=180°-40°=140°
...Ну и как "Лучшее решение" не забудь отметить, ОК?!.. ;)
. Сума кутів трикутника. Зовнішній кут трикутника
1. Сума кутів трикутника
Теорема про суму кутів трикутника. Сума кутів трикутника дорівнює 180°.
w
2. Зовнішній кут трикутника
Зовнішнім кутом трикутника називається кут, суміжний із кутом трикутника при цій вершині.
Наприклад: – зовнішній кут трикутника АВС.
Із теореми про суму кутів трикутника випливають такі висновки:
1. У будь-якого трикутника хоча б два кути є гострими.
2. Зовнішній кут трикутника дорівнює сумі двох внутрішніх кутів, не суміжних із ним.
Наприклад: .
3. Зовнішній кут трикутника більший за будь-який внутрішній кут, не суміжний із ним.
Наприклад: .
4. Сума гострих кутів прямокутного трикутника дорівнює 90°.
Наприклад: .
. Сума кутів трикутника. Зовнішній кут
Диагонали прямоугольника пересекаются и в точке пересечения делятся пополам.
Значит ΔАОД и ΔВОА - равнобедренные, и
∠ОВА=∠ОАВ, ∠ОАД=∠ОДА=90°-50°=40°
АЕ=ЕВ, т. к. по условию Е - середина АВ.
То есть в ΔВОА ОЕ - медиана.
Далее вспоминаем следующее свойство равнобедренного треугольника:
Биссектриса, медиана и высота, проведённые к основанию, совпадают между собой.
Таким образом ОЕ⊥АВ и ДА⊥АВ, то есть ДА параллельна ОЕ, ∠ОДА+∠ЕОД=180°, как сумма односторонних углов, значит:
∠ЕОД=180°-40°=140°
...Ну и как "Лучшее решение" не забудь отметить, ОК?!.. ;)