решить Из точки круга M, выходят 2 хорды перпендикулярно друг-другу. Сегмент, соединяющий хорды по середине равен 12дециметров. Посчитайте площадь сегмента круга
ответ: В соответствии с классическим определением, уго� между векторами, отложенными от одной точки, определяется как кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором. Для заданного варианта углы между векторами могут быть определены из соотношения углов в треугольнике ABC, в котором ∠АСВ=90°, ∠СВА=40°, соответственно ∠САВ=180°-(90°+40°)=50°. Тогда -
- угол между векторами СА и СВ равен ∠АСВ=90°;
- угол между векторами ВА и СА равен ∠САВ=50°;
- угол между векторами СВ и ВА равен ∠САВ+∠АСВ=50°+90°=140°
7 см
Объяснение:
В любом треугольнике одна из сторон всегда меньше суммы двух других сторон.
1) Пусть основание АС треугольника АВС равно 7 см, а боковые стороны АВ = ВС = 3 см.
Проверим, существует такой треугольник или нет:
АВ + ВС = 3 + 3 = 6 см
Так как сумма длин двух сторон АВ и ВС меньше длины третьей стороны (6<7), то такой треугольник не существует.
2) Пусть основание АС треугольника АВС равно 3 см, а боковые стороны АВ = ВС = 7 см.
Проверим, существует такой треугольник или нет:
АВ + ВС = 7 + 7 = 14 см
Так как сумма длин двух сторон АВ и ВС больше длины третьей стороны (14>3), то такой треугольник существует.
Значит, третья сторона данного равнобедренного треугольника равна 7 см.
ответ: 7 см
ответ: В соответствии с классическим определением, уго� между векторами, отложенными от одной точки, определяется как кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором. Для заданного варианта углы между векторами могут быть определены из соотношения углов в треугольнике ABC, в котором ∠АСВ=90°, ∠СВА=40°, соответственно ∠САВ=180°-(90°+40°)=50°. Тогда -
- угол между векторами СА и СВ равен ∠АСВ=90°;
- угол между векторами ВА и СА равен ∠САВ=50°;
- угол между векторами СВ и ВА равен ∠САВ+∠АСВ=50°+90°=140°
Подробнее - на -
Объяснение: