Если соединить концы медиан, т.е. середины сторон, то мы получим треугольник, подобный данному с коэффициентом подобия 2, т.е размеры этого треугольника будут в 2 раза меньше, чем соответствующие размеры у исходного треугольника. Известно, что площади подобных треугольников относятся, как квадраты коэффициентов подобия, значит площадь нового треугольника будет в 4 раза меньше площади данного треугольника. А соединяя середины медиан мы ещё в два раза уменьшаем размеры треугольника, поэтому его площадь будет ещё в 4 раза меньше. Итого мы должны площадь данного треугольника разделить на 16 и получим 1 ответ: 1
Из правильного треугольника АВС: из теоремы Пифагора: высота ВК равна 3 корня из 2. Угол ОАК - это угол между плоскостью АОС и основанием. Поскольку угол ОАК = 30 градусов, то катет ОК равен гипотенузы ОА как катет, который лежит против угла 30 градусов. ОК = ОА/2. Пускай ОК = х, тогда ОА = 2х. Из прямоугольного треугольника ОАК: за теоремой Пифагора: OA^2 = OK^2 + AK^2, 4x^2 = 9 - x^2, 3x^2 = 9, x^2 = 3, x = корень из 3. OK = корень из 3. Объем призмы равен площади основания умножить на высоту: S = So*H = S(ABC)*OK = BK*AC/2*OK = 9 корней из 6.
А соединяя середины медиан мы ещё в два раза уменьшаем размеры треугольника, поэтому его площадь будет ещё в 4 раза меньше. Итого
мы должны площадь данного треугольника разделить на 16 и получим 1
ответ: 1