Проекция наклонной на плоскость - это отрезок один из концов которого есть один из концов наклонной принадлежащий данной плоскости, другой - перпендикуляр, опущенный из второго конца наклонной на данную плоскость. Рассмотрим треугольник, образованный наклонной, ее проекцией и перпендикуляром опущенным из конца наклонной не принадлежащего данной плоскости на эту плоскость. Он прямоугольный. Если катет вдвое меньше гипотенузы, то угол противолежащий катету равен 30 градусов, следовательно угол фи равен 180 - (90+30)=60
ромб - параллелограмм, у кот.все стороны равныдиагонали ромба перпендикулярны и делятся точкой пересечения пополам (как и у любого параллелограмма)диагонали ромба - биссектрисы его угловромб ABCD AB=BC... AB=BD => треугольник ABD - равностороннийв равностороннем треугольнике все стороны и все углы равны => BAD = 180/3=60 = BDA = DBABD - биссектриса CDA => CDA = 2BDA = 2*60 = 120BAD = BCD, CDA = CBA (т.к. ромб - это параллелограмм)вторая диагональ AC = AO + OCиз ABO (AB=10, BO=5) по т.Пифагора AO = корень(10*10-5*5) = корень(100-25) = корень(75) = корень(25*3) = 5*корень(3)