Решить Найдите угол между радиусами OA и OB окружности, если расстояние от центра О окружности до хорды АВ в 2 раза меньше:1) Длины хорды АВ 2)Радиуса окружности .
1) В четырехугольнике ABCD точки E и F — соответственно середины равных сторон AB и CD . Серединные перпендикуляр к стороне AD пересекает серединный перпендикуляр к стороне BC в точке P . Докажите, что серединный перпендикуляр, проведенный к отрезку EF проходит через точку P .
2) В четырехугольнике ABCD серединные перпендикуляры к сторонамAB и CD пересекаются на стороне AD . Известно, что \angle A = \angle D . Докажите, что в четырехугольнике диагонали равны.
3) В квадрате ABCD даны точки E и F соответственно на сторонах AB и BC ,причем \angle AED = \angle FED . Докажите равенство EF = AE + FC
Углы треугольника составляют 40, 60 и 80 градусов (т.к. 2х+3х+4х=180 => 9x=180 => x=20). Пусть вершины треугольника обозначены АВС, центр окружности - О. Отрезок ОА является биссектрисой угла ВАС, ОВ делит пополам АВС, и ОС - соответственно ВСА. Поэтому угол ОАВ=20=ОАС, ОВС=ОВА=30, ОСА=ОСВ=40.
Угол АОВ (под ним видна сторона АВ) равен 130. (АОВ=180-ОАВ-ОВА=180-20-30) Угол АОС (под ним видно сторона АС) равен 120. (АОС=180-ОАС-ОСА=180-20-40) Угол ВОС (под ним видна сторона ВС) равен 110. (АОВ=180-ОВС-ОСВ=180-30-40)
1) В четырехугольнике ABCD точки E и F — соответственно середины равных сторон AB и CD . Серединные перпендикуляр к стороне AD пересекает серединный перпендикуляр к стороне BC в точке P . Докажите, что серединный перпендикуляр, проведенный к отрезку EF проходит через точку P .
2) В четырехугольнике ABCD серединные перпендикуляры к сторонамAB и CD пересекаются на стороне AD . Известно, что \angle A = \angle D . Докажите, что в четырехугольнике диагонали равны.
3) В квадрате ABCD даны точки E и F соответственно на сторонах AB и BC ,причем \angle AED = \angle FED . Докажите равенство EF = AE + FC
так???!!!
Углы треугольника составляют 40, 60 и 80 градусов (т.к. 2х+3х+4х=180 => 9x=180 => x=20).
Пусть вершины треугольника обозначены АВС, центр окружности - О. Отрезок ОА является биссектрисой угла ВАС, ОВ делит пополам АВС, и ОС - соответственно ВСА. Поэтому угол ОАВ=20=ОАС, ОВС=ОВА=30, ОСА=ОСВ=40.
Угол АОВ (под ним видна сторона АВ) равен 130. (АОВ=180-ОАВ-ОВА=180-20-30)
Угол АОС (под ним видно сторона АС) равен 120. (АОС=180-ОАС-ОСА=180-20-40)
Угол ВОС (под ним видна сторона ВС) равен 110. (АОВ=180-ОВС-ОСВ=180-30-40)