Призмой называется многогранник, две грани которого n-угольники, а остальные n граней — параллелограммы.Боковые ребра призмы равны и параллельны.
Перпендикуляр, проведенный из какой-либо точки одного основания к плоскости другого основания, называется высотой призмы. Отрезок, соединяющий две вершины призмы, не принадлежащие одной грани, называется диагональю призмы.Поверхность призмы состоит из оснований и боковой поверхности призмы. Боковая поверхность призмы состоит из параллелограммов.
Если боковые ребра призмы перпендикулярны к основаниям, то призма называется прямой. В противном случае призма называется наклонной.
У прямой призмы боковые грани – прямоугольники.
Высота прямой призмы равна ее боковому ребру.
Прямая призма называется правильной, если она прямая, и ее основания — правильные многоугольники
Площадь поверхности и объём призмы
Пусть H — высота призмы, — боковое ребро призмы, — периметр основания призмы, площадь основания призмы, — площадь боковой поверхности призмы, — площадь полной поверхности призмы, - объем призмы, — периметр перпендикулярного сечения призмы, — площадь перпендикулярного сечения призмы. Тогда имеют место следующие соотношения:
Для прямой призмы, у которой боковые ребра перпендикулярны плоскостям оснований, площадь боковой поверхности и объем даются формулами:
Параллелепипед
Параллелепипедом называется призма, основанием которой является параллелограмм.
Параллелограммы, из которых составлен параллелепипед, называются его гранями, их
x+y+2=0,
x-5y+2=0,
5x-y-14=0.
x+y+2=0, x+y+2 = 0
x-5y+2=0|x(-1) -x+5y-2 = 0
6y = 0, y = 0
y = -2-x = -2-0 = -2. Пусть это точка А(-2; 0).
x+y+2=0,
5x-y-14=0.
6х -12 = 0
х = 12/6 = 2,
у = -2-х = -2-2 = -4. Обозначим точку В(2; -4).
x-5y+2=0. x-5y+2 = 0
5x-y-14=0|x(-5) -25x+5y+70 = 0.
-24x + 72 = 0
x = 72/24 = 3.
y = 5x -14 = 5*3-14 = 15-14 =1 это точка С(3; 1).
Расчет длин сторон
АВ = √((Хв-Ха)²+(Ув-Уа)²) = √32 ≈ 5,656854249,
BC = √((Хc-Хв)²+(Ус-Ув)²) = √26 ≈ 5,099019514,
AC = √((Хc-Хa)²+(Ус-Уa)²) = √26 ≈ 5,099019514.
Периметр Р = 15,85489.
Призма
Призмой называется многогранник, две грани которого n-угольники, а остальные n граней — параллелограммы.Боковые ребра призмы равны и параллельны.
Перпендикуляр, проведенный из какой-либо точки одного основания к плоскости другого основания, называется высотой призмы. Отрезок, соединяющий две вершины призмы, не принадлежащие одной грани, называется диагональю призмы.Поверхность призмы состоит из оснований и боковой поверхности призмы. Боковая поверхность призмы состоит из параллелограммов.
Если боковые ребра призмы перпендикулярны к основаниям, то призма называется прямой. В противном случае призма называется наклонной.
У прямой призмы боковые грани – прямоугольники.
Высота прямой призмы равна ее боковому ребру.
Прямая призма называется правильной, если она прямая, и ее основания — правильные многоугольники
Площадь поверхности и объём призмы
Пусть H — высота призмы, — боковое ребро призмы, — периметр основания призмы, площадь основания призмы, — площадь боковой поверхности призмы, — площадь полной поверхности призмы, - объем призмы, — периметр перпендикулярного сечения призмы, — площадь перпендикулярного сечения призмы. Тогда имеют место следующие соотношения:
Для прямой призмы, у которой боковые ребра перпендикулярны плоскостям оснований, площадь боковой поверхности и объем даются формулами:
Параллелепипед
Параллелепипедом называется призма, основанием которой является параллелограмм.
Параллелограммы, из которых составлен параллелепипед, называются его гранями, их