1) если два катета одного прямоугольного треугольника равны
соответственно двум катетам другого прямоугольного треугольника, то
такие треугольники равны - первый признак равенства треугольников по двум сторонам и углу между ними
4) если две стороны одного прямоугольного треугольника равны
соответственно двум сторонам другого прямоугольного треугольника,
то такие треугольники равны - если две стороны одного прямоугольного треугольника равны соответственно двум сторонам другого прямоугольного треугольника, то и третья сторона одного треугольника равна третьей стороне другого треугольника; такие треугольники равны по трем сторонам
Cечение, проходящее через вершины А,С и D1 призмы пройдет и через вершину F1, так как плоскость, пересекающая две параллельные плоскости (плоскости оснований), пересекает их по параллельным прямым, то есть по прямым АС и D1F1. В сечении имеем прямоугольник со сторонами АС и СD1 (так как грани АА1F1F и CC1D1D параллельны между собой и перпендикулярны плоскостям оснований и, следовательно, углы сечения равны 90⁰). Причем отрезок СD1 (гипотенуза прямоугольного треугольника) по Пифагору равна 2√2. Половину стороны АС найдем из прямоугольного треугольника АВН, в котором <ABH=60°, а <BAH=30° (так как <АВС - внутренний угол правильного шестиугольника и равен 120°). 0,5*АС=√(4-1)=√3. АС=2√3. Площадь сечения равна 2√2*2√3=4√6. ответ: S=4√6.
1) если два катета одного прямоугольного треугольника равны
соответственно двум катетам другого прямоугольного треугольника, то
такие треугольники равны - первый признак равенства треугольников по двум сторонам и углу между ними
4) если две стороны одного прямоугольного треугольника равны
соответственно двум сторонам другого прямоугольного треугольника,
то такие треугольники равны - если две стороны одного прямоугольного треугольника равны соответственно двум сторонам другого прямоугольного треугольника, то и третья сторона одного треугольника равна третьей стороне другого треугольника; такие треугольники равны по трем сторонам
0,5*АС=√(4-1)=√3. АС=2√3.
Площадь сечения равна 2√2*2√3=4√6.
ответ: S=4√6.