Теория- прямоугольные треугольники. В основании прямоугольник. Диагональ АС делит его на два прямоугольных треугольника По теореме Пифагора АС²=AD²+DC²=12²+5²=144+25=169=13² АС=13 Треугольник АСС₁ - прямоугольный. Ребро СС₁ ⊥ плоскости основания ABCD, а значит перпендикулярно любой прямой, лежащей в плоскости Угол между диагональю АС₁ и плоскостью основания - угол между диагональю АС₁ и её проекцией на плоскость АВСD. А проекцией будет диагональ АС. Значит в прямоугольном треугольнике АСС₁ острый угол 45°, второй острый угол тоже 45°. Сумма острых углов прямоугольного треугольника 90° Треугольник АСС₁ - прямоугольный равнобедренный, АС=СС₁=13
По теореме Пифагора
АС²=AD²+DC²=12²+5²=144+25=169=13²
АС=13
Треугольник АСС₁ - прямоугольный. Ребро СС₁ ⊥ плоскости основания ABCD, а значит перпендикулярно любой прямой, лежащей в плоскости
Угол между диагональю АС₁ и плоскостью основания - угол между диагональю АС₁ и её проекцией на плоскость АВСD. А проекцией будет диагональ АС.
Значит в прямоугольном треугольнике АСС₁ острый угол 45°, второй острый угол тоже 45°. Сумма острых углов прямоугольного треугольника 90°
Треугольник АСС₁ - прямоугольный равнобедренный, АС=СС₁=13
В правильном тетраэдре все грани - равные равносторонние треугольники.
Площадь одной грани:
S₁ = a²√3/4 = 4²√3/4 = 4√3 см²
Так как К - середина DC, то АК = ВК - медианы и высоты равных треугольников DAC и DBC. Тогда
Sakd = Sbkd = 1/2 S₁ = 2√3 см² - это площади двух боковых граней пирамиды KABD.
Пусть Н - середина АВ, так как треугольник АКВ равнобедренный, то КН - его высота.
СН = DH = а√3/2 = 4√3/2 = 2√3 см как медианы и высоты равных равносторонних треугольников.
Тогда ΔDHC равнобедренный, КН - его медиана и высота:
КН⊥CD.
ΔСКН: ∠СКН = 90°, СН = 2√3 см, СК = CD/2 = 2 см, по теореме Пифагора
КН = √(CH² - CK²) = √((2√3)² - 2²) = √(12 - 4) = √8 = 2√2 см
Sabk = 1/2 AB · KH = 1/2 · 4 · 2√2 = 4√2 см²
Площадь боковой поверхности пирамиды KABD:
Sбок = Sakd + Sbkd + Sabk = 2√3 + 2√3 + 4√2 = 4(√3 + √2) см²