а) ∠ 1 = ∠ 4 = ∠ 5 = ∠ 8 = 20°,
∠ 2 = ∠ 3 = ∠ 6 = ∠ 7 = 160°.
b) ∠ 1 = ∠ 2 = ∠ 3 = ∠ 4 = ∠ 5 = ∠ 6 = ∠ 7 = ∠ 8 = 90°.
с) ∠ 1 = ∠ 4 = ∠ 5 = ∠ 8 = 32°,
∠ 2 = ∠ 3 = ∠ 6 = ∠ 7 = 148°.
Объяснение:
Задание а.
∠ 1 = 20°,
тогда ∠ 2 = 180° - ∠ 1 = 180° - 20° = 160°;
∠ 1 = ∠ 4 = 20° - как углы вертикальные;
∠ 1 = ∠ 5 = 20° - как углы соответственные при параллельных прямых а и b и секущей с;
∠ 5 = ∠ 8 = 20° - как углы вертикальные;
таким образом образом,
∠ 1 = ∠ 4 = ∠ 5 = ∠ 8 = 20°;
аналогично и остальные 4 угла равны между собой:
Задание b.
∠ 1 = ∠ 2 = 180° : 2 = 90°
Согласно доказательству в Задании а):
∠ 1 = ∠ 2 = ∠ 3 = ∠ 4 = ∠ 5 = ∠ 6 = ∠ 7 = ∠ 8 = 90°.
Задание с.
∠ 1 = 32°,
тогда ∠ 2 = 180° - ∠ 1 = 180° - 32° = 148°;
∠ 1 = ∠ 4 = 32° - как углы вертикальные;
∠ 1 = ∠ 5 = 32° - как углы соответственные при параллельных прямых а и b и секущей с;
∠ 5 = ∠ 8 = 32° - как углы вертикальные;
∠ 1 = ∠ 4 = ∠ 5 = ∠ 8 = 32°;
По условию задачи, диагональ трапеции разбила её на два треугольника, у которых средние линии равны 5 см и 9 см. Это понятно.
Дальше:
Поскольку средняя линия равна половине основания, то, соответственно, основания этих треугольников равны, поэтому приведу следующие вычисления:
5*2=10 см.
9*2=18 см.
Итак, основания этих треугольников являются основаниями самой трапеции, а это и значит, что основания трапеции будут являться 10 см. и 18 см.
а) ∠ 1 = ∠ 4 = ∠ 5 = ∠ 8 = 20°,
∠ 2 = ∠ 3 = ∠ 6 = ∠ 7 = 160°.
b) ∠ 1 = ∠ 2 = ∠ 3 = ∠ 4 = ∠ 5 = ∠ 6 = ∠ 7 = ∠ 8 = 90°.
с) ∠ 1 = ∠ 4 = ∠ 5 = ∠ 8 = 32°,
∠ 2 = ∠ 3 = ∠ 6 = ∠ 7 = 148°.
Объяснение:
Задание а.
∠ 1 = 20°,
тогда ∠ 2 = 180° - ∠ 1 = 180° - 20° = 160°;
∠ 1 = ∠ 4 = 20° - как углы вертикальные;
∠ 1 = ∠ 5 = 20° - как углы соответственные при параллельных прямых а и b и секущей с;
∠ 5 = ∠ 8 = 20° - как углы вертикальные;
таким образом образом,
∠ 1 = ∠ 4 = ∠ 5 = ∠ 8 = 20°;
аналогично и остальные 4 угла равны между собой:
∠ 2 = ∠ 3 = ∠ 6 = ∠ 7 = 160°.
Задание b.
∠ 1 = ∠ 2 = 180° : 2 = 90°
Согласно доказательству в Задании а):
∠ 1 = ∠ 2 = ∠ 3 = ∠ 4 = ∠ 5 = ∠ 6 = ∠ 7 = ∠ 8 = 90°.
Задание с.
∠ 1 = 32°,
тогда ∠ 2 = 180° - ∠ 1 = 180° - 32° = 148°;
∠ 1 = ∠ 4 = 32° - как углы вертикальные;
∠ 1 = ∠ 5 = 32° - как углы соответственные при параллельных прямых а и b и секущей с;
∠ 5 = ∠ 8 = 32° - как углы вертикальные;
таким образом образом,
∠ 1 = ∠ 4 = ∠ 5 = ∠ 8 = 32°;
аналогично и остальные 4 угла равны между собой:
∠ 2 = ∠ 3 = ∠ 6 = ∠ 7 = 148°.
Тут всё достаточно просто, вот смотри:
По условию задачи, диагональ трапеции разбила её на два треугольника, у которых средние линии равны 5 см и 9 см. Это понятно.
Дальше:
Поскольку средняя линия равна половине основания, то, соответственно, основания этих треугольников равны, поэтому приведу следующие вычисления:
5*2=10 см.
9*2=18 см.
Итак, основания этих треугольников являются основаниями самой трапеции, а это и значит, что основания трапеции будут являться 10 см. и 18 см.