Для вычисления величины любого из углов произвольного треугольника используйте теорему косинусов. Она гласит, что квадрат длины любой стороны (например, A) равен сумме квадратов длин двух других сторон (B и C), из которой вычтено произведение их же длин на косинус угла (α), лежащего в образуемой ими вершине. Это значит, что вы можете выразить косинус через длины сторон: cos(α) = (B²+C²-A²)/(2*A*B). Чтобы получить величину этого угла в градусах, к полученному выражению примените обратную косинусу функцию - арккосинус: α = arccos((B²+C²-A²)/(2*A*B)). Таким вы вычислите величину одного из углов - в данном случае того, который лежит напротив стороны А.
2
Для вычисления двух оставшихся углов можно использовать ту же формулу, меняя в ней местами длины известных сторон. Но более простое выражение с меньшим числом математических операций можно получить, задействовав другой постулат из области тригонометрии - теорему синусов. Она утверждает, что отношение длины любой стороны к синусу противолежащего ей угла в треугольнике равны. Это значит, что вы можете выразить, например, синус угла β, лежащего напротив стороны B через длину стороны C и уже рассчитанного угла α. Умножьте длину B на синус α, а результат разделите на длину C: sin(β) = B*sin(α)/C. Величину этого угла в градусах, как и в предыдущем шаге, рассчитайте с использованием обратной тригонометрической функции - на этот раз арксинуса: β = arcsin(B*sin(α)/C).
3
Величину оставшегося угла (γ) можно вычислить по любой из полученных в предыдущих шагах формул, поменяв в них местами длины сторон. Но проще задействовать еще одну теорему - о сумме углов в треугольнике. Она утверждает, что эта сумма всегда равна 180°. Так как два из трех углов вам уже известны, просто отнимите от 180° их величины, чтобы получить величину третьего: γ = 180°-α-β.
Для вычисления величины любого из углов произвольного треугольника используйте теорему косинусов. Она гласит, что квадрат длины любой стороны (например, A) равен сумме квадратов длин двух других сторон (B и C), из которой вычтено произведение их же длин на косинус угла (α), лежащего в образуемой ими вершине. Это значит, что вы можете выразить косинус через длины сторон: cos(α) = (B²+C²-A²)/(2*A*B). Чтобы получить величину этого угла в градусах, к полученному выражению примените обратную косинусу функцию - арккосинус: α = arccos((B²+C²-A²)/(2*A*B)). Таким вы вычислите величину одного из углов - в данном случае того, который лежит напротив стороны А.
2
Для вычисления двух оставшихся углов можно использовать ту же формулу, меняя в ней местами длины известных сторон. Но более простое выражение с меньшим числом математических операций можно получить, задействовав другой постулат из области тригонометрии - теорему синусов. Она утверждает, что отношение длины любой стороны к синусу противолежащего ей угла в треугольнике равны. Это значит, что вы можете выразить, например, синус угла β, лежащего напротив стороны B через длину стороны C и уже рассчитанного угла α. Умножьте длину B на синус α, а результат разделите на длину C: sin(β) = B*sin(α)/C. Величину этого угла в градусах, как и в предыдущем шаге, рассчитайте с использованием обратной тригонометрической функции - на этот раз арксинуса: β = arcsin(B*sin(α)/C).
3
Величину оставшегося угла (γ) можно вычислить по любой из полученных в предыдущих шагах формул, поменяв в них местами длины сторон. Но проще задействовать еще одну теорему - о сумме углов в треугольнике. Она утверждает, что эта сумма всегда равна 180°. Так как два из трех углов вам уже известны, просто отнимите от 180° их величины, чтобы получить величину третьего: γ = 180°-α-β.
То есть углы будут равны
30
94
56
1) Диагонали квадрата перпендикулярны, равны и точкой пересечения делятся пополам. BD перпендикулярно MN, BD перпендикулярно AC, следовательно MN паралельно AC. треугольник DAC подобен треугольнику DMN по двум углам, AC : MN = DO : DB = 1 : 2.AC = BD = 19
MN = 2AC = 38
2) 15+5=20
3) угол CDE составляет 2 часть, ∠ADE - 7 таких частей, всего 9 частей. угол CDE = 90° : 9 = 10°. сумма острых углов прямоугольного треугольника 90°, тогда из треугольник CDE: угол DCE = 90° - угол CDE = 90° - 10° = 80°. Диагонали прямоугольника равны и точкой пересечения делятся пополам, тогда треугольник COD равнобедренный (CO = OD), значит углы при его основании равны: угол OCD = угол ODC = 80°.В треугольник OCD находим третий угол: угол COD = 180° следовательно 180° - 160° = 20° - угол между диагоналями.