РЕШИТЬ ВМЕСТЕ С УСЛОВИЕМ ЗАДАЧИ.
1. Боковое ребро правильной треугольной усечённой пирамиды равно 5, а апофема равна 4. Найти площадь полной поверхности пирамиды.
2. Диагональ основания правильной четырёхугольной пирамиды Угол наклона бокового ребра к плоскости
основания 450. Найдите площадь боковой поверхности
пирамиды.
3. В основании пирамиды DABC лежит прямоугольный
треугольник ABC, катеты которого равны 8см и 6см. Боковые грани пирамиды равнонаклонены к плоскости основания. Высота пирамиды равна Найдите площадь полной поверхности пирамиды.
центр вписанной окружности (он же - основание высоты пирамиды) и точка пересечения диагоналей основания. Нужно теперь доказать, что эти точки не совпадают. По условию, основанием является равнобокая трапеция. Высота этой трапеции - это диаметр вписанной окружности, отсюда можно заключить, что центр вписанной окружности, находится на одинаковом расстоянии от оснований трапеции. Для точки пересечения диагоналей этого сказать нельзя. Пусть ABCD - это данная равнобокая трапеция, являющаяся основанием данной в условии пирамиды. Причем AD - большее основание, BC - меньшее основание трапеции. Пусть т. F - точка пересечения диагоналей. Проведя диагонали трапеции AC и BD. Найдем, что треугольники AFD и CFB подобны по двум углам (накрест лежащие углы при параллельных прямых AD и BC и секущих BD и AC равны). Но коэффициент подобия этих треугольников не равен 1 (k = AD/BC, но AD>BC, поэтому AD/BC>1), то есть эти треугольники не равны, а значит неравны и их высоты, проведенные из т. F, что означает, что т. F не равноудалена от оснований трапеции, в отличии о центра вписанной в трапецию окружности. ЧТД.
Синус острого угла в прямоугольном треугольнике — это отношение противолежащего катета к гипотенузе:
Косинус острого угла в прямоугольном треугольнике — отношение прилежащего катета к гипотенузе:
Тангенс острого угла в прямоугольном треугольнике — отношение противолежащего катета к прилежащему:
Другое (равносильное) определение: тангенсом острого угла называется отношение синуса угла к его косинусу:
Котангенс острого угла в прямоугольном треугольнике — отношение прилежащего катета к противолежащему (или, что то же самое, отношение косинуса к синусу)