а) Центр О2 находится внутри окружности О1, окружности пересекаются
б) Расстояние между центрами равно сумме радиусов. Каждая из окружностей лежит вне другой, но они имеют общую точку на линии центров (внешнее касание)
в) Каждая из окружностей целиком лежит вне другой. Окружности не имеют общих точек.
Объяснение:
а) 10 меньше, чем 11. Значит, r находится внутри окружности R.
11-10=1 см - расстояние от О2 до границы окружности О1.
1 меньше, чем 3,5, следовательно, окружности пересекаются
б) 7,3+3,7=11 см и расстояние О1О2 = 11 см, следовательно, окружности касательны друг к другу наружно.
в) 7+5=12 см, что меньше, чем О1О2 = 15 см, следовательно, каждая из окружностей целиком лежит вне другой. Окружности не имеют общих точек.
S=πRl+πR², ( l образующая)
Sполн.пов.=πR*(l+R)
1. сечение конуса - равнобедренный прямоугольный треугольник: гипотенуза - хорда х=6, катеты - образующие конуса l.
по теореме Пифагора:
x²=l²+l², 6²=l²+l², l²=18, l=3√2
2. осевое сечение конуса - равнобедренный треугольник основание - диаметр основания конуса d, боковые стороны - образующие конуса l.
по теореме косинусов: d²=l²+l²-2*l*l*cos120°
d²=18+18-2*√18*√18*(-1/2)
d²=54, d=3√6. R=1,5√6
S=π*1,5(√6*3√2+1,5)=1,5*π*(6√2+1,5)
S=1,5π*(6√2+1,5)
а) Центр О2 находится внутри окружности О1, окружности пересекаются
б) Расстояние между центрами равно сумме радиусов. Каждая из окружностей лежит вне другой, но они имеют общую точку на линии центров (внешнее касание)
в) Каждая из окружностей целиком лежит вне другой. Окружности не имеют общих точек.
Объяснение:
а) 10 меньше, чем 11. Значит, r находится внутри окружности R.
11-10=1 см - расстояние от О2 до границы окружности О1.
1 меньше, чем 3,5, следовательно, окружности пересекаются
б) 7,3+3,7=11 см и расстояние О1О2 = 11 см, следовательно, окружности касательны друг к другу наружно.
в) 7+5=12 см, что меньше, чем О1О2 = 15 см, следовательно, каждая из окружностей целиком лежит вне другой. Окружности не имеют общих точек.