Модуль, это длина вектора. СУММА векторов. Начало второго вектора совмещается с концом первого, сумма же есть вектор, с началом, совпадающим с началом первого, и концом, совпадающим с концом второго. РАЗНОСТЬ. Для получения вектора разности (c) = (a-b) начала векторов соединяются и началом вектора разности (c) будет конец вектора (b) (вычитаемое), а концом — конец вектора (a) (уменьшаемое). Исходя из этого: 1) |AB+BC|=|AC|, то есть |AB+BC|= а. 2) |AB+AC|=|AB+BC1|=|AC1|. АС1 - диагональ параллелограмма, построенного на векторах АВ и АС и вектор АС1 равен 2*АО. Вектор АО- высота равностороннего треугольника и равен а*√3/2. Значит АС1=а*√3. |AB+AC|=а*√3. 3) |AB+CB|=|AB+C1B1|=|A1B1|. Вектор СВ переносим в конец вектора АВ, получаем вектор С1В1. Сумма - вектор АВ1. Вектор АВ1 по модулю равен вектору АС1. |AB+CB|=а*√3. 4) |ВА-ВC|=|CA|=а. 5) |АВ-АC|=|CВ|=а.
раз площади ∆ADC и ∆CDB относятся как 1 :3, то отрезки AD и DB тоже относятся как 1 :3 (так как у этих треугольников одна высота) AD/DB = 1/3 ∆ACD подобен ∆CDB (высота в прямоугольном треугольнике, проведенная к гипотенузе делит треугольник на два подобных) <A = <DCB (сходственные углы подобных треугольников) обозначим СВ как х тогда tgA = CD/AD = x/1 tgDCB = DB/CD = 3/x раз углы равны, то tgA = tgDCB x/1 = 3/x x^2 = 3 x = √3 tgA = x/1 = √3
<A = arctg(tgA) = 60 ° <B = 180 - 90 - <A = 30° ну а <C у нас прямой по условию
СУММА векторов. Начало второго вектора совмещается с концом первого, сумма же есть вектор, с началом, совпадающим с началом первого, и концом, совпадающим с концом второго.
РАЗНОСТЬ. Для получения вектора разности (c) = (a-b) начала векторов соединяются и началом вектора разности (c) будет конец вектора (b) (вычитаемое), а концом — конец вектора (a) (уменьшаемое).
Исходя из этого:
1) |AB+BC|=|AC|, то есть |AB+BC|= а.
2) |AB+AC|=|AB+BC1|=|AC1|. АС1 - диагональ параллелограмма, построенного на векторах АВ и АС и вектор АС1 равен 2*АО. Вектор АО- высота равностороннего треугольника и равен а*√3/2. Значит АС1=а*√3.
|AB+AC|=а*√3.
3) |AB+CB|=|AB+C1B1|=|A1B1|. Вектор СВ переносим в конец вектора АВ, получаем вектор С1В1. Сумма - вектор АВ1. Вектор АВ1 по модулю равен вектору АС1.
|AB+CB|=а*√3.
4) |ВА-ВC|=|CA|=а.
5) |АВ-АC|=|CВ|=а.
отрезки AD и DB тоже относятся как 1 :3 (так как у этих треугольников одна высота)
AD/DB = 1/3
∆ACD подобен ∆CDB (высота в прямоугольном треугольнике, проведенная к гипотенузе делит треугольник на два подобных)
<A = <DCB (сходственные углы подобных треугольников)
обозначим СВ как х
тогда
tgA = CD/AD = x/1
tgDCB = DB/CD = 3/x
раз углы равны, то
tgA = tgDCB
x/1 = 3/x
x^2 = 3
x = √3
tgA = x/1 = √3
<A = arctg(tgA) = 60 °
<B = 180 - 90 - <A = 30°
ну а <C у нас прямой по условию