решить задачи ! ! ! по геометрии. нужно дать полное решение + к каждой задаче нужен рисунок. очень Найти площадь полной поверхности прямой треугольной призмы, в основании которой лежит прямоугольный треугольник с катетами 5 см и 12 см, если высота призмы равна 10 см.
Боковое ребро правильной треугольной пирамиды равно 8 см и образует с плоскостью основания угол 30°. Найти площадь боковой поверхности пирамиды.
Найти площадь полной поверхности прямой призмы, в основании которой лежит ромб со стороной 8 см и острым углом 60°, если большая диагональ призмы наклонена к плоскости ее основания под углом 30°.
Решение: Рассмотрим треугольник ACH: Так как CH - высота,то этот треугольник прямоугольный. Следовательно CH - катет и мы находим его по теореме Пифагора: CH = √6^²-4^² = √36-16 = √20 = 2√5
Я предлагаю рассмотреть треугольник ABC и найти x через CB(не знаю можно ли так,как я решил,но я запишу)
AB=4+x
CB=√AB²-AC² = √(4-x)²-6² = √x²-10x-20
Разбираем квадратичное уравнение:
x²-10x-20=0
D= 100+4*20=180 √D= 6√5
x_{12} = 5+-3√5
x2 - не подходит,так как получается отрицательным,поэтому BH = 5+3√5.
ответ: 5+3√5
угол A равен 470 . Найдите угол C и угол B.
2. AB и AC – отрезки касательных, проведенных к окружности радиуса 6 см. Найдите длинуOA и AC, если AB = 8 см.
3. Точки A и B делят окружность с центром O на дуги AMB и ACB так, что дуга ACB на 800меньше дуги AMB. AM – диаметр окружности. Найдите углы AMB, ABM, ACB.
4. Найдите радиус окружности, вписанной в треугольник, и радиус окружности, описанной около треугольника, стороны которого равны 16 см, 17 см и 17 см.
Контрольная работа № 5 по теме: «Окружность» Вариант 2
1. Дана окружность с центром в точке O. AB –диаметр, точка C отмечена на окружности,