5 см
Объяснение:
1) Опустим перпендикуляр из точки М на сторону АС.
МК - кратчайшее расстояние от М до АС, равное согласно условию задачи, 2√13 см.
2) Так как МВ перпендикулярно плоскости треугольника АВС, то МВ⊥ВК - проекции МК на плоскость АВС, ∠МВК - прямой, ВК⊥АС, ВК - высота ΔАВС.
3) Находим ВК как высоту правильного треугольника АВС:
ВК = (a√3)/2, где а - сторона правильного треугольника; а = 6 см, согласно условию задачи;
ВК = (a√3)/2 = (6√3)/2 = 3√3 см
4) В прямоугольном треугольнике МВК:
МВ и ВК являются катетами, а МК - является гипотенузой.
Согласно теореме Пифагора:
МВ² = МК² - ВК²
МВ² = (2√13)² - (3√3)² = (4·13 - 9·3) = 52-27 = 25
МВ = √25 = 5 см
ответ: 5 см
5 см
Объяснение:
1) Опустим перпендикуляр из точки М на сторону АС.
МК - кратчайшее расстояние от М до АС, равное согласно условию задачи, 2√13 см.
2) Так как МВ перпендикулярно плоскости треугольника АВС, то МВ⊥ВК - проекции МК на плоскость АВС, ∠МВК - прямой, ВК⊥АС, ВК - высота ΔАВС.
3) Находим ВК как высоту правильного треугольника АВС:
ВК = (a√3)/2, где а - сторона правильного треугольника; а = 6 см, согласно условию задачи;
ВК = (a√3)/2 = (6√3)/2 = 3√3 см
4) В прямоугольном треугольнике МВК:
МВ и ВК являются катетами, а МК - является гипотенузой.
Согласно теореме Пифагора:
МВ² = МК² - ВК²
МВ² = (2√13)² - (3√3)² = (4·13 - 9·3) = 52-27 = 25
МВ = √25 = 5 см
ответ: 5 см