Диагонали прямоугольника точкой пересечения делятся пополам. Если одна сторона х, то половина диагонали - тоже х. Сторона и две половины диагоналей образуют треугольник с равными сторонами, т.е. правильный треугольник. В правильном треугольнике все углы равны 180°:3= 60°. Следовательно, угол между диагоналями равен 60°, а смежный с ним 180°-60°=120°. --------- Или ( если через х решать, и это будет дольше): Диагональ прямоугольника делит его на 2 равных прямоугольных треугольника, в которых гипотенуза в два раза больше одного катета. Пусть этот катет АВ=х, а противолежащий ему угол ВСА = α Тогда гипотенуза АС=2х Синус угла, противолежащего известному катету, равен отношению катета к гипотенузе. sinα=х/2х=0,5 Это синус угла 30° Диагонали прямоугольника при пересечении делятся пополам и со сторонами образуют равнобедренные треугольники. Обозначим точку пересечения диагоналей О. Тогда в ∆ ВОС стороны ВО=СО, ∠ОВС=∠ОСВ=30°, и ∠ВОС=120° Смежный с ним ∠ВОА=180°-120°=60°
Построение ясно из рисунка. Поскольку плоскость проходит через точки В,С и М, значит она проходит через среднюю линию MN грани АСD, параллельную ребру ВС. Продлим прямые ВМ и СN до их пересечения в точке Р. Треугольник ВРС равнобедренный, следовательно вершина S пирамиды SBPC спроецируется на высоту PF основания ВРС, являющуюся и медианой основания, в точке Н. Расположение точки Н на прямой PF зависит от угла SQF между плоскостями ВРС и АSВ. В нашем случае этот угол тупой, поэтому точка Н лежит вне грани АSD пирамиды SABCD.
Так как пирамида правильная, в основании - квадрат. Диагональ квадрата равна в нашем случае 6√2. Ее половина ОС=3√2. Высота пирамиды по Пифагору SO=√(SC²-OC²)=√(144-18)=3√14. Необходимо найти перпендикуляр SH к плоскости BCMN. Вариант решения - через подобие прямоугольных треугольников SHE и FOE по равным острым углам при вершине Е. Углы SHE и EOF - прямые. Из этого подобия имеем соотношение: SH/FO=SE/EF и SH=FO*SE/EF. Высота пирамиды SO=3√14 (по Пифагору из треугольника SOC). Тогда QG=0,5*SO (так как MN - средняя линия треугольника ASD, и значит QG - средняя линия треугольника KSO). Из подобия треугольников QGF и EOF имеем ЕО=FO*QG/FG. FO=3, QG=1,5√14, FG=4,5. Тогда ЕО=3*1,5√14/4,5=√14 и, следовательно, SE=SO-EO=2√14. EF находим из треугольника EOF по Пифагору: EF=√(OF²+OE²)=√(9+14)=√23. Тогда SH=3*2√14/√23. ответ: SH=6√14/√23.
Если одна сторона х, то половина диагонали - тоже х. Сторона и две половины диагоналей образуют треугольник с равными сторонами, т.е. правильный треугольник.
В правильном треугольнике все углы равны 180°:3= 60°. Следовательно, угол между диагоналями равен 60°, а смежный с ним 180°-60°=120°.
---------
Или ( если через х решать, и это будет дольше):
Диагональ прямоугольника делит его на 2 равных прямоугольных треугольника, в которых гипотенуза в два раза больше одного катета.
Пусть этот катет АВ=х, а противолежащий ему угол ВСА = α
Тогда гипотенуза АС=2х
Синус угла, противолежащего известному катету, равен отношению катета к гипотенузе.
sinα=х/2х=0,5
Это синус угла 30°
Диагонали прямоугольника при пересечении делятся пополам и со сторонами образуют равнобедренные треугольники. Обозначим точку пересечения диагоналей О.
Тогда в ∆ ВОС стороны ВО=СО, ∠ОВС=∠ОСВ=30°, и ∠ВОС=120°
Смежный с ним ∠ВОА=180°-120°=60°
Поскольку плоскость проходит через точки В,С и М, значит она проходит через среднюю линию MN грани АСD, параллельную ребру ВС. Продлим прямые ВМ и СN до их пересечения в точке Р. Треугольник ВРС равнобедренный, следовательно вершина S пирамиды SBPC спроецируется на высоту PF основания ВРС, являющуюся и медианой основания, в точке Н.
Расположение точки Н на прямой PF зависит от угла SQF между плоскостями ВРС и АSВ. В нашем случае этот угол тупой, поэтому точка Н лежит вне грани АSD пирамиды SABCD.
Так как пирамида правильная, в основании - квадрат.
Диагональ квадрата равна в нашем случае 6√2.
Ее половина ОС=3√2.
Высота пирамиды по Пифагору SO=√(SC²-OC²)=√(144-18)=3√14.
Необходимо найти перпендикуляр SH к плоскости BCMN.
Вариант решения - через подобие прямоугольных треугольников SHE и FOE по равным острым углам при вершине Е. Углы SHE и EOF - прямые.
Из этого подобия имеем соотношение: SH/FO=SE/EF и SH=FO*SE/EF.
Высота пирамиды SO=3√14 (по Пифагору из треугольника SOC).
Тогда QG=0,5*SO (так как MN - средняя линия треугольника ASD, и значит QG - средняя линия треугольника KSO).
Из подобия треугольников QGF и EOF имеем ЕО=FO*QG/FG.
FO=3, QG=1,5√14, FG=4,5. Тогда ЕО=3*1,5√14/4,5=√14 и, следовательно, SE=SO-EO=2√14.
EF находим из треугольника EOF по Пифагору:
EF=√(OF²+OE²)=√(9+14)=√23. Тогда SH=3*2√14/√23.
ответ: SH=6√14/√23.