дан куб abcda1b1c1d1; точка P - середина ребра aa1. постройте сечение куба плоскостью проходящей через точки p и d1 параллельно диагонали ac грани abcd куба. найдите периметр сечения если ребро куба равно 10
Объяснение:
АС₁∈(АСС₁) , Р∈АА₁ , значит в этой плоскости можно провести РО║АС₁. Тогда искомым сечением будет ΔРОD₁.
Т.к. АР=РА₁ и РО║А₁С₁ , то по т. Фалеса А₁О=ОС₁ ⇒РО- средняя линия ΔАА₁С₁ , РО=1/2*АС₁.
Дополним усеченную пирамиду до полной.
Так как в правильной пирамиде высота проходит через центр окружности, вписанной в основание, то О и О1 — центры окружностей, вписанных в АВС и А1В1С1.
Проведем SK⊥AC, а значит, и SK1⊥A1C1.
Тогда по теореме о трех перпендикулярах ОК⊥АС и OK1⊥A1C1. Значит, ОК и O1K1 — радиусы окружностей, вписанных в правильные треугольники ABC и A1B1C1.
Так что,
Далее, проведем K1H⊥KO.
Тогда K1O1OH — прямоугольник, значит, К1Н = ОО1
Так как ∠K1KH является линейным углом двугранного угла между основанием и боковой гранью, то ∠K1KH = 60° (по условию).
Тогда в
Так что
ОО1 = К1Н = 2 см ответ: 2 см.
дан куб abcda1b1c1d1; точка P - середина ребра aa1. постройте сечение куба плоскостью проходящей через точки p и d1 параллельно диагонали ac грани abcd куба. найдите периметр сечения если ребро куба равно 10
Объяснение:
АС₁∈(АСС₁) , Р∈АА₁ , значит в этой плоскости можно провести РО║АС₁. Тогда искомым сечением будет ΔРОD₁.
Т.к. АР=РА₁ и РО║А₁С₁ , то по т. Фалеса А₁О=ОС₁ ⇒РО- средняя линия ΔАА₁С₁ , РО=1/2*АС₁.
Найдем диагональ куба АС₁=√10²+10²+10²)=10√3 , РО=5√3.
ΔА₁D₁Р- прямоугольный , D₁Р=√(10²+5²)=5√5
Каждая грань куба -квадрат. Найдем диагональ АС=√(10²+10²)=10√2 .
Тогда половина диагонали ОD₁=5√2.
P=5√2+5√5+5√3=5(√2+√3+√5).