Пусть MNPQM1N1P1Q1 - куб. Я присваиваю новые обозначения четырем вершинам M -> A; N1 -> B; P -> C; Q1 -> D; (само собой, я и про старые обозначения не забываю, просто помню, что если говорю "точка А", то это одновременно означает "точка М", и наоборот). Ясно, что ABCD - правильный тетраэдр, так как все его грани - равносторонние треугольники. Точка K является центром грани куба MM1Q1Q, точка L - центр грани куба NN1P1P, поэтому KL II PQ. Точка С1 - центр грани MM1N1N, и в задаче надо найти угол C1PQ; Если считать длину ребра куба равной 2, то C1P = √(1^2 + 2^2 + 2^) = √6; и косинус угла C1PQ = 1/√6 = √6/6;
1) квадрат; 2) прямоугольник; 3) параллелограмм; 4) равнобочная трапеция
Объяснение:
Находим длины сторон четырёхугольника по формуле
1) A(-2; 0), B(0; -2), C(2; 0), D(0; 2)
Четырёхугольник, у которого все стороны равны, является ромбом.
Найдём длины диагоналей ромба
Ромб, диагонали которого равны, является квадратом.
АВСD - квадрат
2) A(-2; 1), B(2; -1), C(3; 1), D(-1; 3)
Четырёхугольник, у которого противоположные стороны попарно равны, является параллелограммом.
Найдём длины диагоналей параллелограмма
Параллелограмм, диагонали которого равны, является прямоугольником.
АВСD - прямоугольник
3) A(-2; 1), B(2; 2), C(1; 4), D(-3; 3)
Четырёхугольник, у которого противоположные стороны попарно равны, является параллелограммом.
Найдём длины диагоналей параллелограмма
Диагонали параллелограмма имеют различную длину.
АВСD - параллелограмм
4) A(-2; -1), B(2; -1), C(1; 2), D(-1; 2)
Уравнение прямой, содержащей сторону АВ у = -1, а уравнение прямой, содержащей сторону CD, у = 2. Следовательно АВ║ СD.
Запишем уравнение прямой, содержащей сторону ВС:
3x - 6 = -y - 1
y = -3x + 5
Запишем уравнение прямой, содержащей сторону AD:
3x + 6 = y + 1
y = 3x + 5
Очевидно, что ВС ∦ AD
Четырёхугольник, у которого две противоположные стороны параллельны, а две другие не параллельны, является трапецией.
Видим, что боковые стороны трапеции ВC = AD
АВСD - равнобочная трапеция
Подробнее - на -
Я присваиваю новые обозначения четырем вершинам
M -> A; N1 -> B; P -> C; Q1 -> D;
(само собой, я и про старые обозначения не забываю, просто помню, что если говорю "точка А", то это одновременно означает "точка М", и наоборот).
Ясно, что ABCD - правильный тетраэдр, так как все его грани - равносторонние треугольники.
Точка K является центром грани куба MM1Q1Q, точка L - центр грани куба NN1P1P, поэтому KL II PQ.
Точка С1 - центр грани MM1N1N, и в задаче надо найти угол C1PQ;
Если считать длину ребра куба равной 2, то C1P = √(1^2 + 2^2 + 2^) = √6;
и косинус угла C1PQ = 1/√6 = √6/6;