При условии, что угол равен 120 радусам Дано: АВСD = равнобедренная трапеция , ВС = 8 см, АD = 14 см.угол В = 120 градусов.Найти: АВ и СD - боковые стороны.Решение: т.к. АВСD - равноб. трапеция, а в ней углы при основании равны и сумма всех ее углов = 360 градусов, значит угол А = 180 - 120 = 60 градусов. Соответственно и угол D = 60 градусов( по теореме о равн. трапеции).из вершин В провести высоту ВН, а из вершины С провести высоту СМ к стороне АD. ВН = СМ, как расположенные между параллельными прямыми АВ и СD( ведь АВСD - равноб. трапеция.)ВС = НМ, т.к НВСМ - это прямоугольник, потому что угол Н, В, С, и М = 90 градусов( так. как ВН и СМ - высоты.)Рассмотрим треугольники ВНА и СМD - прямоугольные.они равны, т.к1) АВ = СD( по условию)2) угол А = угол В.из равенства треуг. следует равенство их элементов - АН = МD.Значит, АН=МD=3 см, т.к АН+МD= 6 см, а НМ = 8 см, и АН+МD + НМ = 14см или = АD.в треуг. ВНА и СМD угол В и С равны 30 градусов( по теореме о сумме остр. углолв в прямоуг. треугольниках.)катет, лежащий против угла в 30 градусов, равен половине гипотенузы.тогда, если АН = 3 см, то АВ = 2*3= 6 см. т. к. АВ = СD, то СD = 6 см. ч.т .д.
AD параллельно BC - или трапеция, или параллелограмм
угол A и угол C в два раза меньше угла B - значит <A = <C - углы равны
<A = <C = <B / 2
AD параллельно BC
< D и < A - односторонние < D = 180 - <A =180 - <B /2
сумма углов четырех угольника = 360 град
уравнение
<A +<B +<C +<D = 360
подстановка
<B / 2 +<B +<B / 2 +180 - <B /2= 360
<B (1/2 +1 +1/2 -1/2) + 180 =360
<B * 3/2 = 360 -180 = 180
<B = 180 *2/3 = 120
<A = <C = <B/2 = 120 /2 =60
<D = 180 - 60 = 120
углы четырёхугольника 60;120;60;120 - параллелограмм
Дано: АВСD = равнобедренная трапеция , ВС = 8 см, АD = 14 см.угол В = 120 градусов.Найти: АВ и СD - боковые стороны.Решение: т.к. АВСD - равноб. трапеция, а в ней углы при основании равны и сумма всех ее углов = 360 градусов, значит угол А = 180 - 120 = 60 градусов. Соответственно и угол D = 60 градусов( по теореме о равн. трапеции).из вершин В провести высоту ВН, а из вершины С провести высоту СМ к стороне АD. ВН = СМ, как расположенные между параллельными прямыми АВ и СD( ведь АВСD - равноб. трапеция.)ВС = НМ, т.к НВСМ - это прямоугольник, потому что угол Н, В, С, и М = 90 градусов( так. как ВН и СМ - высоты.)Рассмотрим треугольники ВНА и СМD - прямоугольные.они равны, т.к1) АВ = СD( по условию)2) угол А = угол В.из равенства треуг. следует равенство их элементов - АН = МD.Значит, АН=МD=3 см, т.к АН+МD= 6 см, а НМ = 8 см, и АН+МD + НМ = 14см или = АD.в треуг. ВНА и СМD угол В и С равны 30 градусов( по теореме о сумме остр. углолв в прямоуг. треугольниках.)катет, лежащий против угла в 30 градусов, равен половине гипотенузы.тогда, если АН = 3 см, то АВ = 2*3= 6 см. т. к. АВ = СD, то СD = 6 см. ч.т .д.