решить Заранее В основании прямой призмы лежит треугольник АВС со сторонами АВ = 8, ВС = 15, АС = 17. Боковое ребро АА1 = 15. Найдите площадь полной поверхности призмы.
1. Т.к. треугольник равнобедренный, то высота=биссектриса=медиана ⇒ делит угол 120° на два по 60, образует с основанием два угла по 90° ⇒ образуются два одинаковых прямоугольных Δ. Углы при основании по 30°, сторона, противолежащая углу в 30 = половине гипотенузы ⇒ гипотенуза в данном случае = 9*2=18.
2. Меньшему углу соответствует меньший катет ⇒ этот угол 30° (90-60), применяем свойство из 1-го задания. Гипотенуза = 12*2 = 24.
3. Нет, не может. Если угол А - тупой, то противолежащая сторона (BC) должна быть наибольшей, что противоречит условию.
4. Если угол, противоположный основанию = 40, то углы при основании = (180-40)/2 = 70°. Если углы при основании по 40, то третий угол = 180-40*2 =100°.
1) Биссектрисы треугольника пересекаются в одной точке. 3) Гипотенуза прямоугольного треугольника равна катету, деленному на синус противолежащего угла.
1) Медина, проведенная из вершины прямого угла, является радиусом описанной около прямоугольного треугольника окружности. 3) Площадь ромба равна произведению квадрата его стороны на на синус угла между смежными сторонами. 5) Если в трапецию можно вписать окружность , то суммы ее противоположных сторон равны.
1) В любой треугольник можно вписать в окружность. 5) Любые два равносторонних треугольника подобны.
2. Меньшему углу соответствует меньший катет ⇒ этот угол 30° (90-60), применяем свойство из 1-го задания. Гипотенуза = 12*2 = 24.
3. Нет, не может. Если угол А - тупой, то противолежащая сторона (BC) должна быть наибольшей, что противоречит условию.
4. Если угол, противоположный основанию = 40, то углы при основании = (180-40)/2 = 70°. Если углы при основании по 40, то третий угол = 180-40*2 =100°.
3) Гипотенуза прямоугольного треугольника равна катету, деленному на синус противолежащего угла.
1) Медина, проведенная из вершины прямого угла, является радиусом описанной около прямоугольного треугольника окружности.
3) Площадь ромба равна произведению квадрата его стороны на на синус угла между смежными сторонами.
5) Если в трапецию можно вписать окружность , то суммы ее противоположных сторон равны.
1) В любой треугольник можно вписать в окружность.
5) Любые два равносторонних треугольника подобны.