Колон отличался от раба тем,что он имел свободу и мог арендовать землю,владел имуществом,мог жениться,а раб был собственностью своего господина который кормил его и не дал бы умереть с голода.
Поэтому конечно лучше работал колон учитывая что он работает на себя.
P.s Колоны свободны, а рабы нет
P.s Колонов стали закреплять за участками земли, они не могли уходить с них, дети колонов должны были оставаться в том месте, где родились их родители. Такое же положение было у «рабов с хижинами», которые не могли покинуть участок, но их можно было продать вместе с землей.
Окружность, вписанная в правильный треугольник, помимо свойств вписанной в произвольный треугольник окружности, обладает своими собственными свойствами.
1) Центр вписанной в треугольник окружности — точка пересечения его биссектрис.
Поскольку в равностороннем треугольнике биссектрисы, медианы и высоты совпадают, то центр вписанной в правильный треугольник окружности является точкой пересечения не только его биссектрис, но также медиан и высот.
okruzhnost-vpisannaya-v-pravilnyj-treugolnikНапример, в правильном треугольнике ABC AB=BC=AC=a
точка O — центр вписанной окружности.
AK, BF и CD — биссектрисы, медианы и высоты треугольника ABC.
\[AK \cap BF = O,\]
\[AK \cap CD = O.\]
2) Расстояние от центра вписанной окружности до точки касания её со стороной треугольника равно радиусу. Так как центр вписанной в правильный треугольник окружности лежит на пересечении его медиан, а медианы треугольника в точке пересечения делятся в отношении 2:1, считая от вершины, то радиус вписанной в равносторонний треугольник окружности равен одной третьей длины медианы:
Колон отличался от раба тем,что он имел свободу и мог арендовать землю,владел имуществом,мог жениться,а раб был собственностью своего господина который кормил его и не дал бы умереть с голода.
Поэтому конечно лучше работал колон учитывая что он работает на себя.
P.s Колоны свободны, а рабы нет
P.s Колонов стали закреплять за участками земли, они не могли уходить с них, дети колонов должны были оставаться в том месте, где родились их родители. Такое же положение было у «рабов с хижинами», которые не могли покинуть участок, но их можно было продать вместе с землей.
Окружность, вписанная в правильный треугольник
Окружность, вписанная в правильный треугольник, помимо свойств вписанной в произвольный треугольник окружности, обладает своими собственными свойствами.
1) Центр вписанной в треугольник окружности — точка пересечения его биссектрис.
Поскольку в равностороннем треугольнике биссектрисы, медианы и высоты совпадают, то центр вписанной в правильный треугольник окружности является точкой пересечения не только его биссектрис, но также медиан и высот.
okruzhnost-vpisannaya-v-pravilnyj-treugolnikНапример, в правильном треугольнике ABC AB=BC=AC=a
точка O — центр вписанной окружности.
AK, BF и CD — биссектрисы, медианы и высоты треугольника ABC.
\[AK \cap BF = O,\]
\[AK \cap CD = O.\]
2) Расстояние от центра вписанной окружности до точки касания её со стороной треугольника равно радиусу. Так как центр вписанной в правильный треугольник окружности лежит на пересечении его медиан, а медианы треугольника в точке пересечения делятся в отношении 2:1, считая от вершины, то радиус вписанной в равносторонний треугольник окружности равен одной третьей длины медианы:
\[OF = \frac{1}{3}BF,\]
\[r = \frac{1}{3} \cdot \frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{6}\]
Таким образом, формула для радиуса вписанной в правильный треугольник окружности
\[r = \frac{{a\sqrt 3 }}{6}\]
Обратно, сторона равностороннего треугольника через радиус вписанной окружности:
Объяснение: