Решите до 17.05.2019 билет №1 2. на применение теоремы о вписанном угле и следствий из нее. решите : в окружность вписан треугольник abc так, что ав - диаметр окружности. найдите углы треугольника, если: дуга вс=134°. билет №2 2. на применение признаков подобия треугольников. решите : человек стоит на расстоянии 12 м от столба, на котором висит фонарь, расположенный на высоте 9,5 м. тень человека равна 3 м. какого роста человек (в метрах)? билет №3 2. на применение теоремы об отрезках касательных к окружности, проведенных из одной точки. решите : касательные в точках a и b к окружности с центром o пересекаются под углом 72°. найдите угол abo. билет №4 2. на применение понятий синус, косинус и тангенс в прямоугольном треугольнике. решите : в треугольнике abc угол c прямой, sin a = 0.4. найдите ab и ac. билет №5 2. на вычисление площади треугольника. решите : в треугольнике одна из сторон равна 10, другая равна, а угол между ними равен 30°. найдите площадь треугольника. билет №6 2. на пропорциональные отрезки в прямоугольном треугольнике. решите : точка h является основанием высоты, проведённой из вершины прямого угла b треугольника abc к гипотенузе ac. найдите ab, если ah = 5, ac = 20. билет №7 2. на окружность, описанную около треугольника. решите : найдите сторону равностороннего треугольника, если радиус описанной около него окружности равен 10 см. билет №8 2. на применение теоремы о произведении отрезков пересекающихся хорд. решите : хорда ав окружности перпендикулярна к диаметру mn и пересекает его в точке с. найдите хорду ав, если см=4см, cn=8 см. билет №9 2. на применение признаков подобия треугольников. решите : в треугольнике авс ав=66, вс=39, ас=75. точки m и n лежат на сторонах ав и св соответственно так, что вм : ма=bn : nc=1 : 3. найдите периметр треугольника mnb. билет №10 2. на углы вписанного четырехугольника. решите : четырехугольник abcd вписан в окружность. угол abc равен 70°, угол cad равен 49°. найдите угол abd. билет №11 2. на применение свойства касательной к окружности.. решите : к окружности с центром в точке о проведены касательная ab и секущая ao. найдите радиус окружности, если ab = 12 см, ao = 13 см. билет №12 2. на применение теоремы о площади вписанного треугольника. решите : в прямоугольный треугольник с катетами 5см и 12 см вписана окружность. найдите её радиус. билет №13 2. на параллелограмм и его свойства. решите : найдите величину острого угла параллелограмма abcd, если биссектриса угла a образует со стороной bc угол, равный 15°. билет №14 2. на применение теоремы о площадях треугольников, имеющих по равной высоте. решите : сравните площади двух треугольников, на которые данный делится треугольник его медианой. найдите площадь этих двух треугольников, если площадь данного треугольника равна 12. билет №15 2. на вычисление площади параллелограмма. решите : сторона параллелограмма равна 15, а расстояние от точки пересечения его диагоналей до этой стороны равно 3. найдите площадь параллелограмма. билет №16 2. на вычисление площади ромба. решите : сторона ромба равна 5, а диагональ равна 8. найдите площадь ромба. билет №17 2. на вычисление площади трапеции. решите : в равнобедренной трапеции основания равны 3 и 9, а один из углов между боковой стороной и основанием равен 45°. найдите площадь трапеции. билет №18 2. на пропорциональные отрезки в прямоугольном треугольнике. решите : катеты прямоугольного треугольника равны 60 и 80. найдите высоту, проведенную к гипотенузе и отрезки гипотенузы, на которые она разделяется этой высотой. билет №19 2. на применение теоремы пифагора. решите : в прямоугольном треугольнике гипотенуза равна 6, а один из острых углов равен 45°. найдите его катеты и площадь. билет №20 2. на применение подобия. решите : стороны угла а пересечены параллельными прямыми mn и рк, причем точки м и р лежат на одной стороне угла, а точки n и к – на другой. известно, что ар = 22, мр = 8, nк=10, mn = 13. найдите отрезки аn, ак и рк.
1) 2
2) 1
3) 2
4) 1,5
Объяснение:
1) у любого треугольника сумма углов 180
проверяем:
1)30+40+90 = 160 ≠180
2)30+40+110 =180=180
3)30+50+110=190≠180
значит подходит только 2) 30,40,110
2)
если треугольник равнобедренный, то боковые стороны равны
1) 10см 1дм 8 см - равнобедренный
2) 10см 10дм 8см - данные величины не задают треугольник
3) 1 см 10дм 8 см аналогично 2)
3)
сумма углов в треугольнике равна 180 градусам, значит
180 -(45+18)=117
получили 1) 10см 1дм 8см
4) В прямоугольном треугольнике один угол равен 90 градусам остальные острые(<90) и в сумме даю 90 градусов
1) подходит
2) 27+35≠90, не подходит
3) не подходит сумма углов > 180
4) не подходит сумма углов < 180
5) подходит
6) не подходит сумма углов < 180
АВ и АС -отрезки касательных, проведенных из точки А к окружности с центром О. Найти АВ и АС, если АО=20 см, ∠ ВОС= 120.°
Объяснение:
Касательная перпендикулярна к радиусу окружности, проведённому в точку касания, значит ∠ОВА=∠ОСА=90.
По свойству отрезков касательных АВ=АС .∠ОАВ=∠ОАС.
ΔОАВ=ΔОАС , как прямоугольный по гипотенузе и острому углу : АО -общая, ∠ОАВ=∠ОАС. В равных треугольниках соответственные элементы равны :∠ВОА=∠СОА=60°
ΔАВО-прямоугольный ,ОА=20 , sin60°=ВА/ОА , √3/2=ВА/20
ВА=10√3 .Значит ВА= АС=10√3 см.