Решите две задачи по геометрии Выполните чертеж и решите задачу
Треугольник АВС равнобедренный с основанием АС, ВК высота. Найдите ∠В, АС, если ∠АВК=350, КС=3см
Решение:
1)ΔАВС рвб., ВК высота⇒ ВК- ….
2)
3)
. Выполните чертеж и решите задачу
Треугольник АВС равнобедренный с основанием АС, ВК медиана. Докажите равенство треугольников АВК и СВК по третьему признаку равенства
Доказательство:
1)АВ=…(т.к. …)
2)ВК медиана⇒ ⇒
3)ВК - …
ну, раз вы второй раз публикуете, я второй раз помещу решение :
1.Пусть стороны АВ = с, AC = b, BC = a;
Рассмотрим треугольник AMP. Ясно, что он подобен исходному ABC, и АМ = с - а;
Значит, пропорция (в отношении сторон) равна (c - a)/c, и АР = b*(c - a)/c, откуда
РС = b - b*(c - a)/c = b*(1 - (c - a)/c)) = b*a/c;
Ровно так же (с точностью до замены a <-> b) доказывается СК = a*b/c; ч.т.д.
2. Тут муторнее :(((. Нужно выполнить следующие построения.
Провести ЕВ1 II АВ, EB1 = AB, треугольник ЕВ1С равнобедренный,
и в нем угол СЕВ1 = угол ВАС, это угол при вершине.
Теперь надо соединить В и В1 и в ПАРАРЛЛЕЛОГРАММЕ АЕВ1В провести "среднюю" линию ММ1 II AB; ясно, что она поделит ВВ1 пополам.
Вобщем-то, все эти построения сводятся к тому, чтобы доказать параллельность АС и КР, где Р - середина СВ1. Это уже видно, поскольку КР II ВВ1 как средняя линяя, а ВВ1 II АС (потому что АЕВ1В - параллелограмм).
Отсюда уже видно, что и МЕРК - параллелограмм, и угол СЕР = 20 градусов, а угол СЕВ1 = 40 градусов, и это - ответ :)))
без чертежа очень сложно объяснять :(((
Т.к. АС диаметр, то вписанные углы АВС и АDC, которые на него опираются равны 180:2=90град.
Треугольники АВО и ADО равносторонние, их стороны равны радиусу, значит и углы равны 180:3=60град., следовательно углы BAO и DAO равны 60град., т.е. угол BAD равен 60·2=120град. Угол BСD=180-120=60град. (Сумма углов четырёхугольника равна 360град.)
Углы BCA и DCA равны по 30град. (90-60=30 свойство углов прямоугольного треугольника) и являются вписанными в окружность, следовательно дуги на которые они опираются AB и AD равны 30·2=60град.
Дуги BC и CD так же в 2 раза больше вписанных углов BAC и DAC, которые на них опираются, т.е. 60·2=120град.
ответ: Углы четырёхугольника ABCD равны 120; 90; 60; 90 град. Дуги АВ и CD - 60град., дуги BC CD по 120град.