1. Диагональ основания d, согласно теореме Пифагора:
d = √(3²+8²) = √(9+64) =√73 см.
2. Диагональ основания d является проекцией на плоскость основания диагонали фигуры D.
3. В прямоугольном треугольнике, образованном диагональю фигуры D, её проекцией d на плоскость основания, а также высотой H прямоугольного параллелепипеда:
D - является гипотенузой, а d и Н - катетами.
Так как D наклонена к плоскости основания под углом 60°, то это означает, что угол между D и d равен 60°.
4. Катет H равен другому катету d, умноженному на тангенс угла противолежащего этому катету:
√219 ≈ 14,8 см
Объяснение:
1. Диагональ основания d, согласно теореме Пифагора:
d = √(3²+8²) = √(9+64) =√73 см.
2. Диагональ основания d является проекцией на плоскость основания диагонали фигуры D.
3. В прямоугольном треугольнике, образованном диагональю фигуры D, её проекцией d на плоскость основания, а также высотой H прямоугольного параллелепипеда:
D - является гипотенузой, а d и Н - катетами.
Так как D наклонена к плоскости основания под углом 60°, то это означает, что угол между D и d равен 60°.
4. Катет H равен другому катету d, умноженному на тангенс угла противолежащего этому катету:
Н = d · tg 60° = √73 · √3 = √219 ≈ 14,8 см
ответ: √219 ≈ 14,8 см