Сначала найдем диагональ BD по Пифагору: BD=√(AB²+AD²)=√(15²+36²)=39. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два меньших треугольника, подобных исходному и подобных друг другу. Треугольники АВD и АОВ подобны, из подобия имеем АВ/BD=AO/AD=ВО/АВ, отсюда АО=15*36/39=180/13. ВО=15*15/39=75/13. Из подобия треугольников АОВ и ВСО имеем: ВС/AВ=ВO/АО, отсюда ВС=ВО*АВ/АО= 6,25. В прямоугольном треугольнике СНD по Пифагору имеем: СD=√(AB²+(AD-ВС)²)=√(15²+29,75²)≈33,32. Из подобия треугольников ВОС и АОО имеем: ВС/AD=ВO/OD, отсюда OD=ВО*АD/BC= 432/13. Значит диагонали делятся в отношении ВО/OD=(75/13)/(432/13)=75/432=25/144. ответ: диагонали делятся в отношении 25/144, ВС=6,25 СD=≈33,32.
P.S. За "кошмарные" числа ответственность на составителе задачи.
ВС = 3√21 см.
Объяснение:
Пусть основание перпендикуляра, опущенного на плоскость α - точка Н.
AH=9 см,<ABH=45°,<ACH=60°,<BHC=150°.
Заметим, что Cos150° = Cos(180 - 30) = -Cos30° = - √3/2.
В прямоугольном треугольнике АВН острые углы равны по 45°, треугольник равнобедренный и ВН=АН= 9см.
В прямоугольном треугольнике АСН тангенс угла С равен
Tg60 = √3 = AH/CH => CH = 9/√3 = 3√3 см.
В треугольнике ВНС по теореме косинусов:
BC²=BH²+CH²-2*BН*CH*cos150 = 81+27 - 2*9*3√3*(-√3/2) или
ВС² = 108+81 =189
BC = √189 = 3√21 см.
В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два меньших треугольника, подобных исходному и подобных друг другу.
Треугольники АВD и АОВ подобны, из подобия имеем АВ/BD=AO/AD=ВО/АВ, отсюда
АО=15*36/39=180/13.
ВО=15*15/39=75/13.
Из подобия треугольников АОВ и ВСО имеем: ВС/AВ=ВO/АО, отсюда ВС=ВО*АВ/АО= 6,25.
В прямоугольном треугольнике СНD по Пифагору имеем:
СD=√(AB²+(AD-ВС)²)=√(15²+29,75²)≈33,32.
Из подобия треугольников ВОС и АОО имеем: ВС/AD=ВO/OD, отсюда OD=ВО*АD/BC= 432/13.
Значит диагонали делятся в отношении
ВО/OD=(75/13)/(432/13)=75/432=25/144.
ответ: диагонали делятся в отношении 25/144, ВС=6,25 СD=≈33,32.
P.S. За "кошмарные" числа ответственность на составителе задачи.