Если боковые ребра пирамиды равнонаклонены, т.е. угол наклона к основанию всех ребер одинаков, то её высота проходит через центр описанной около основания окружности.
Пусть в пирамиде МАВС МО - высота, АВ=40 см, ВС=20 см, АС=30 см. АО=ВО=СО=R.
Полупериметр ∆ АВС=45
Найденная по формуле Герона Ѕ(АВС)=√(45•5•15•25)=75√15.
Формула радиуса описанной около треугольника окружности R=a•b•c/4S, где a,b,c - стороны треугольника, S- его площадь.
R=(20•30•40):(4•75√15)=80/√15
Формула объема пирамиды V=h•S/3 ⇒ 2000=(h•75√15):3. Решив уравнение, получим h=80/√15
В прямоугольном треугольнике АSО катеты АО=SО=80√15. ⇒ tg(SAO)=1. Угол SAO=45°
Виділяємо повні квадрати:
для x: 5 (x²-2 * 3x + 3²) -5 * 3² = 5 (x-3) ²-45,
для y: 9 (y² + 2 * 1y + 1) -9 * 1 = 9 (y + 1) ²-9.
В результаті отримуємо: 5 (x-3) ² + 9 (y + 1) ² = 45
Розділимо всі вираз на 45: ((x-3) ² / 9) + ((y + 1) ² / 5) = 1.
Параметри кривої - це еліпс, його півосі a = 3 і b = √5.
Центр еліпса в точці: C (3; -1)
Координати фокусів F1 (-c; 0) і F2 (c; 0), де c - половина відстані між фокусами: F1 (-2; 0), F2 (2; 0). з = √ (9 - 5) = + -√4 = + -2.
З урахуванням центру, координати фокусів рівні:
F1 ((- 2 + 3) = 1; -1), F2 ((2 + 3) = 5; -1).
Ексцентриситет дорівнює: е = с / а = 2/3.
Внаслідок нерівності c <a ексцентриситет еліпса менше 1.
ответ: 45°
Объяснение:
Если боковые ребра пирамиды равнонаклонены, т.е. угол наклона к основанию всех ребер одинаков, то её высота проходит через центр описанной около основания окружности.
Пусть в пирамиде МАВС МО - высота, АВ=40 см, ВС=20 см, АС=30 см. АО=ВО=СО=R.
Полупериметр ∆ АВС=45
Найденная по формуле Герона Ѕ(АВС)=√(45•5•15•25)=75√15.
Формула радиуса описанной около треугольника окружности R=a•b•c/4S, где a,b,c - стороны треугольника, S- его площадь.
R=(20•30•40):(4•75√15)=80/√15
Формула объема пирамиды V=h•S/3 ⇒ 2000=(h•75√15):3. Решив уравнение, получим h=80/√15
В прямоугольном треугольнике АSО катеты АО=SО=80√15. ⇒ tg(SAO)=1. Угол SAO=45°