проведем отрезок hm - очевидно что это будет также медиана только уже прямоугольного треугольника внс. вспомним что медиана равна половине гипотенузе то есть треугольник mhc равнобедренный так как mc=hm .
угол amh = amc-hmc , а так как amc=180-(x+2x) ; hmc=180-(2x+2x)
amh=180-3x-(180-4x) = x
то есть треугольник amh тоже равнобедренный , значит ah=hm=1
Площадь треугольника равна половине произведения основания на высоту.
В прямоугольном треугольнике основанием и высотой являются его катеты.
В приведённом примере оба катета равны 1, т.к. все 3 вершины треугольника совпадают с вершинами квадрата, а стороны квадрата равны.
Находим площадь треугольника:
(1 * 1) : 2 = 1 : 2 = 0,5.
2-й
Диагональ квадрата делит его на 2 равных треугольника. Поэтому, если площадь квадрата равна 1, то площадь треугольника, образованного сторонами и диагональю квадрата, равна 1 : 2 = 0,5
ответ: 0,5.
ПРИМЕЧАНИЕ.
В задании не сказано, но на рисунке отмечена диагональ квадрата как х.
Согласно теореме Пифагора,
х = √ (1² + 1²) = √2.
Зная стороны треугольника (1 и √2), площадь треугольника можно рассчитать третьим площадь треугольника равна половине произведения сторон на синус угла между ними.
Угол между стороной и гипотенузой равен 45°, т.к. диагональ квадрата является биссектрисой угла, а угол - прямой, равен 90°.
проведем отрезок hm - очевидно что это будет также медиана только уже прямоугольного треугольника внс. вспомним что медиана равна половине гипотенузе то есть треугольник mhc равнобедренный так как mc=hm .
угол amh = amc-hmc , а так как amc=180-(x+2x) ; hmc=180-(2x+2x)
amh=180-3x-(180-4x) = x
то есть треугольник amh тоже равнобедренный , значит ah=hm=1
стало быть bc=2hm=2*1=2
подробнее - на -
0,5
Объяснение:
1-й
Площадь треугольника равна половине произведения основания на высоту.
В прямоугольном треугольнике основанием и высотой являются его катеты.
В приведённом примере оба катета равны 1, т.к. все 3 вершины треугольника совпадают с вершинами квадрата, а стороны квадрата равны.
Находим площадь треугольника:
(1 * 1) : 2 = 1 : 2 = 0,5.
2-й
Диагональ квадрата делит его на 2 равных треугольника. Поэтому, если площадь квадрата равна 1, то площадь треугольника, образованного сторонами и диагональю квадрата, равна 1 : 2 = 0,5
ответ: 0,5.
ПРИМЕЧАНИЕ.
В задании не сказано, но на рисунке отмечена диагональ квадрата как х.
Согласно теореме Пифагора,
х = √ (1² + 1²) = √2.
Зная стороны треугольника (1 и √2), площадь треугольника можно рассчитать третьим площадь треугольника равна половине произведения сторон на синус угла между ними.
Угол между стороной и гипотенузой равен 45°, т.к. диагональ квадрата является биссектрисой угла, а угол - прямой, равен 90°.
sin 45° = √2/2.
Отсюда площадь треугольника равна:
(1 * √2 * √2/2) : 2 = (1 * 2/2) : 2 = 0,5