В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
ANGEL7777771
ANGEL7777771
18.01.2023 01:55 •  Геометрия

Решите Не шарю, вообще ноль(

Показать ответ
Ответ:
Islamiks
Islamiks
26.10.2021 07:17
Цитата: "Правильная призма — это прямая призма, основанием которой является правильный многоугольник. Боковые грани правильной призмы — равные прямоугольники."
Диагональ основания призмы ВD параллельна диагонали сечения ЕЕ1 (доказывать не надо). Тогда ВЕ=ОО1, а искомое расстояние от В до плоскости АЕС1 равно перпендикуляру ОН, основание которого Н лежит на диагонали призмы АС1. В треугольнике ОНО1 угол <НОО1 равен углу треугольника АСС1 <CAC1, как углы с соответственно перпендикулярными сторонами. Cos(<CAC1)=АС/АС1.
АС - диагональ основания призмы (квадрата) и равна 4√2.
АС1 - диагональ призмы (и диагональ сечения) и равна √(АС²+СС1²)=√(32+4)=6. Тогда Cos(<СAC1)=4√2/6=2√2/3.
В треугольнике ОНО1: ОН=ОО1*Cos(<HOO1)=1*2√2/3=2√2/3.
ответ: искомое расстояние равно 2√2/3.

Координатный метод: поместим начало координат в точку В. Пусть ВС- ось X, BB1- ось Y, BA - ось Z.
Мы имеем:
Точки А(0;0;4)В(0;0;0), Е(0;1;0), C1(4;2;0).
Теперь можем написать уравнения плоскости, проходящей через 3 точки и найти расстояние от точки В до плоскости АЕС1.
Для составления уравнения плоскости АЕС1 используем формулу:
|x - xА  xЕ - xА  xС1 - xА|
|y - yА  yЕ - yА  yС1 - yА| = 0.
|z - zА  zЕ - zА  zС1 - zА|
Подставим данные трех наших точек А,Е и С1:
|х-0  0   4 |     
|y-0  1   2 | = 0.
|z-4 -4  -4 |
Раскрываем определитель по первому столбцу, находим уравнение
плоскости:
    | 1  2 |       | 0   4 |             |0  4|
 х*|-4 -4 | - y*|-4  -4 | + (z-4)*|1  2| =0.
Или:
 x(-4+8)- y(0+16) +(z-4)(0-4)=0 или 4x-16y-4z+16=0 или x-4y-z+4=0.
Итак, имеем плоскость в виде Ax+By+Cz+D=0:
x-4y-z+0=0, где А=1, В=-4, С=-1, D=4 и точку В(0;0;0).
Надо найти расстояние от этой точки до плоскости.
Если задано уравнение плоскости Ax + By + Cz + D = 0, то расстояние от точки В(Вx, Вy, Вz) до плоскости можно найти, используя следующую формулу:
d=|A*Bx+B*By+C*Bz+D|/√(A²+B²+C²); В нашем случае:
d=|4|/√(1+16+1)=4/(3√2)=2√2/3.
ответ: расстояние от В до плоскости АЕС1 равно 2√2/3.

Возможно, вы имели в виду в правильной четырехугольной призме авсда1в1с1д1 сторона ав=4 боковая стор
0,0(0 оценок)
Ответ:
kycokbatona
kycokbatona
31.12.2021 23:52
Построим сумму векторов а и b и их разность.
↑АС = ↑р = ↑а + ↑b
↑DB = ↑q = ↑a - ↑b
Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А.
∠ЕАС - искомый.
Из ΔABD найдем длину вектора q по теореме косинусов:
|↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49
|↑q| = 7
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°.
Из ΔABС найдем длину вектора р по теореме косинусов:
|↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129
|↑p| = √129

Из ΔЕАС по теореме косинусов:
cos α = (AE² + AC² - EC²) / (2 · AE · AC)
cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903
cos α = - 13√129/301
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота