Если все боковые грани наклонены к основанию под одинаковыми углами, то проекции высот боковых граней на основание - это радиусы r вписанной в основание окружности.
Высота основания к стороне 6 см равна √)5² - (6/2)²) = 4 см.
Площадь основания So = (1/2)*6*4 = 12 см².
Периметр основания Р = 2*5 + 6 = 16 см. полупериметр р = 16/2 = 8 см.
Радиус вписанной окружности r = S/p = 12/8 = 1,5 см.
Высота наклонной грани hн = r/cos 60° = 1.5/(1/2) = 3 см.
Площадь боковой поверхности Sбок = (1/2)Рhн = (1/2)*16*3 = 24 см².
Треугольники АОА1 и ВОВ1 подобны по признаку: "Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны".
В нашем случае АО/ОВ =А1О/ОВ1 = 2,7/5,4 = 1/2 (стороны пропорциональны),
∠АОА1 = ∠ВОВ1 как вертикальные.
Следовательно, треугольники АОА1 и ВОВ1 подобны с коэффициентом подобия k =1/2.
Высоты А1Н и В1Н1 этих треугольников также относятся с коэффициентом k = 1:2.
В1Н1 = 1,6 м. (дано). Значит А1Н = 1,6·(1/2) = 0,8 м.
Если все боковые грани наклонены к основанию под одинаковыми углами, то проекции высот боковых граней на основание - это радиусы r вписанной в основание окружности.
Высота основания к стороне 6 см равна √)5² - (6/2)²) = 4 см.
Площадь основания So = (1/2)*6*4 = 12 см².
Периметр основания Р = 2*5 + 6 = 16 см. полупериметр р = 16/2 = 8 см.
Радиус вписанной окружности r = S/p = 12/8 = 1,5 см.
Высота наклонной грани hн = r/cos 60° = 1.5/(1/2) = 3 см.
Площадь боковой поверхности Sбок = (1/2)Рhн = (1/2)*16*3 = 24 см².
Sполн = 12 + 24 = 36 см².
0,8 м.
Объяснение:
Треугольники АОА1 и ВОВ1 подобны по признаку: "Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны".
В нашем случае АО/ОВ =А1О/ОВ1 = 2,7/5,4 = 1/2 (стороны пропорциональны),
∠АОА1 = ∠ВОВ1 как вертикальные.
Следовательно, треугольники АОА1 и ВОВ1 подобны с коэффициентом подобия k =1/2.
Высоты А1Н и В1Н1 этих треугольников также относятся с коэффициентом k = 1:2.
В1Н1 = 1,6 м. (дано). Значит А1Н = 1,6·(1/2) = 0,8 м.