Объяснение:
Точка касания двух окружностей (A) лежит на прямой, соединяющей центры (O₁, O₂).
O₁O₂=16 см
O₂A>O₁A
1) Окружности касаются внешним образом.
В этом случае отрезок, соединяющий центры, является суммой радиусов.
O₁A+O₂A=O₁O₂
O₁A=5x, O₂A=3x
5x+3x=16 <=> 8x=16 <=> x=2 (см)
O₁A=5*2 = 10см
O₂A=3*2 =6 см
2) Окружности касаются внутренним образом.
В этом случае отрезок, соединяющий центры, является разностью радиусов.
O₂A-O₁A=O₁O₂
5x-3x=16 <=> 2x=16 <=> x=8 (см)
O₁A=8*5= 40 см
O₂A=8*3=24 см
Точка F находится на расстоянии от плоскости квадрата 7 см
L=9см
а=8см
Точка F находится на равном расстоянии от вершин квадрата ABCD.
Значит точка F перпендикулярно к точке пересечения диагоналей квадрата( к центру).
находим длины диагоналей квадрата по формуле
d=a√2 где а сторона квадрата
а=AB=BC=CD=DA=8см
d=a√2=8√2 см
так как точка F находится перпендикулярно к центру квадрата,
расстояние от центра от каждой вершины равна половине диагонали
d/2=8√2 /2=4√2 см
точка F находится на некоторой высоте над плоскостью квадрата, обозначим как h.
Тогда по теореме Пифагора
h=√L²-(d/2)²=√9² - (4√2)²=√81 - 32=√49=7см
Объяснение:
Точка касания двух окружностей (A) лежит на прямой, соединяющей центры (O₁, O₂).
O₁O₂=16 см
O₂A>O₁A
1) Окружности касаются внешним образом.
В этом случае отрезок, соединяющий центры, является суммой радиусов.
O₁A+O₂A=O₁O₂
O₁A=5x, O₂A=3x
5x+3x=16 <=> 8x=16 <=> x=2 (см)
O₁A=5*2 = 10см
O₂A=3*2 =6 см
2) Окружности касаются внутренним образом.
В этом случае отрезок, соединяющий центры, является разностью радиусов.
O₂A-O₁A=O₁O₂
O₁A=5x, O₂A=3x
5x-3x=16 <=> 2x=16 <=> x=8 (см)
O₁A=8*5= 40 см
O₂A=8*3=24 см
Точка F находится на расстоянии от плоскости квадрата 7 см
Объяснение:
L=9см
а=8см
Точка F находится на равном расстоянии от вершин квадрата ABCD.
Значит точка F перпендикулярно к точке пересечения диагоналей квадрата( к центру).
находим длины диагоналей квадрата по формуле
d=a√2 где а сторона квадрата
а=AB=BC=CD=DA=8см
d=a√2=8√2 см
так как точка F находится перпендикулярно к центру квадрата,
расстояние от центра от каждой вершины равна половине диагонали
d/2=8√2 /2=4√2 см
точка F находится на некоторой высоте над плоскостью квадрата, обозначим как h.
Тогда по теореме Пифагора
h=√L²-(d/2)²=√9² - (4√2)²=√81 - 32=√49=7см