Решите , ! отрезок длиной 50 см опирается на две взаимно перпендикулярные плоскости. расстояния от концов отрезка до плоскости равны 30 см и 32 см. найдите проекцию отрезков на каждую из плоскостей
Номер 1. Т.к треугольник прямоугольный, то один из углов 90градусов по опр. Значит т.к треугольник еще и р/б, то по свойству у него два угла при основании равны. Если среди них есть угол в 90градусов то их сумма 180градусов, что противоречит теорема о сумме углов в треугольника, значит эти углы по (180-90)/2=45градусов. ответ:90,45,45 Номер 2. Т.к треугольник CDE - р/б, то угол C равен углу E, значит т.к угол D равен 54градуса, то угол E=(180-54)/2=63градуса. То т.к CF - высота, то угол CFE=90градусов, следовательно угол ECF=180-54-63=63градуса ответ:63градуса Надеюсь все понятно объяснил.
2х = 2 * (L/8) = L/4 - это и будет точка, разбивающая отрезок в отношении: 2 : 6.
2-й с циркуля и нешкалированной линейки).
1) Чертим произвольный отрезок.
2) Из концов отрезка, раствором циркуля, превышающим половину длины отрезка, делаем по 2 засечки (сверху и снизу).
3) Прикладываем линейку к точкам пересечения засечек и проводим линию, пересекающую отрезок, - это середина отрезка.
4) Аналогично делим пополам, левую половину отрезка и полученную точку отмечаем как границу, которая делит отрезок в отношении 2:6, или, что одно и то же, - 1:3.
См. Объяснение.
Объяснение:
1-й с шкалированной линейки).
1) Чертим произвольный отрезок.
2) Измеряем длину отрезка (L).
3) Решаем уравнение:
2х + 6х = L
x = L/8.
4) От начала отрезка откладываем:
2х = 2 * (L/8) = L/4 - это и будет точка, разбивающая отрезок в отношении: 2 : 6.
2-й с циркуля и нешкалированной линейки).
1) Чертим произвольный отрезок.
2) Из концов отрезка, раствором циркуля, превышающим половину длины отрезка, делаем по 2 засечки (сверху и снизу).
3) Прикладываем линейку к точкам пересечения засечек и проводим линию, пересекающую отрезок, - это середина отрезка.
4) Аналогично делим пополам, левую половину отрезка и полученную точку отмечаем как границу, которая делит отрезок в отношении 2:6, или, что одно и то же, - 1:3.