1. 40 (вписанный угол, значит делим дугу, на которую он опирается, на два) 2. 160 (вписанный угол; чтобы найти дугу, на которую опирается, нужно умножить угол на два) 3. 30 (углы опирающиеся на одну дугу равны) 4. 150 (центральный угол в два раза больше вписанного) 5. Угол опирающийся на диаметр равен 90 6. Угол В вписанный => делим дугу на два = 65; угол В и угол А равны (равнобедренный треугольник) => угол А = 65
7. Треугольник АОВ равнобедренный (ОВ=ОА как радиусы) => угол В=угол А => угол АОВ= 180-35-35=110; угол ВОС смежный => 180-110=70 => дуга равна центральному углу => ответ 70
1. Достраиваем исходный прямоугольный треугольник до прямоугольника. 2. Проводим вторую диагональ получившегося прямоугольника. 3. Получилось четыре одинаковых прямоугольных треугольника. 4. Разбиваем прямоугольник на четыре равных прямоугольника проводя параллельные прямые через точку пересечения диагоналей. 5. Получившиеся прямоугольники имеют наибольшую площадь так как в сумме дают полную площадь прямоугольника. 6. Площадь прямоугольника 8*5=40 см². 7. Площадь вписанного прямоугольника 40/4=10 см².
2. 160 (вписанный угол; чтобы найти дугу, на которую опирается, нужно умножить угол на два)
3. 30 (углы опирающиеся на одну дугу равны)
4. 150 (центральный угол в два раза больше вписанного)
5. Угол опирающийся на диаметр равен 90
6. Угол В вписанный => делим дугу на два = 65; угол В и угол А равны (равнобедренный треугольник) => угол А = 65
7. Треугольник АОВ равнобедренный (ОВ=ОА как радиусы) => угол В=угол А => угол АОВ= 180-35-35=110; угол ВОС смежный => 180-110=70 => дуга равна центральному углу =>
ответ 70
2. Проводим вторую диагональ получившегося прямоугольника.
3. Получилось четыре одинаковых прямоугольных треугольника.
4. Разбиваем прямоугольник на четыре равных прямоугольника проводя параллельные прямые через точку пересечения диагоналей.
5. Получившиеся прямоугольники имеют наибольшую площадь так как в сумме дают полную площадь прямоугольника.
6. Площадь прямоугольника 8*5=40 см².
7. Площадь вписанного прямоугольника 40/4=10 см².