Прямая призма - это призма, у которой боковые ребра перпендикулярны основанию.
Т.к. в основании лежит четырехугольник, то он может быть либо прямоугольником, либо параллелограммом, либо - трапецией (ромбом и квадратом быть не может, т.к. стороны основания не равны по условию).
Если в основании лежит трапеция, то данных задачи не хватает и решить ее нельзя.
Поэтому будем считать, что в основании прямоугольник или параллелограмм, у которых противоположные стороны равны - в этом случае задача решается однозначно.
Площадь боковой поверхности вычисляют по формуле
Sбок = Pосн · h, где Pосн - периметр основания, h - высота призмы.
Т.к. в основании призмы четырехугольник (мы выяснили - прямоугольник или параллелограмм), то его периметр находят по формуле Росн = 2(а + b), где a и b - стороны четырехугольника.
"Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны." (по двум сторонам и углу между ними)
Второй признак равенства треугольников:
"Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны". (по стороне и двум прилежащим к ней углам)
Третий признак равенства треугольников:
"Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны." (по трем сторонам)
Вертикальные углы равны.
В 4)нет обозначений,в 5) есть только один угол и одна сторона,а этого недостаточно для равенства,6) Второй признак равенства прямоугольных треугольников-по катету и остому углу, 12)по второму признаку равенства треугольников(по стороне и двум углам) или по второму признаку равенства прямоугольных треугольников (по катету и острому углу)
Прямая призма - это призма, у которой боковые ребра перпендикулярны основанию.
Т.к. в основании лежит четырехугольник, то он может быть либо прямоугольником, либо параллелограммом, либо - трапецией (ромбом и квадратом быть не может, т.к. стороны основания не равны по условию).
Если в основании лежит трапеция, то данных задачи не хватает и решить ее нельзя.
Поэтому будем считать, что в основании прямоугольник или параллелограмм, у которых противоположные стороны равны - в этом случае задача решается однозначно.
Площадь боковой поверхности вычисляют по формуле
Sбок = Pосн · h, где Pосн - периметр основания, h - высота призмы.
Т.к. в основании призмы четырехугольник (мы выяснили - прямоугольник или параллелограмм), то его периметр находят по формуле Росн = 2(а + b), где a и b - стороны четырехугольника.
Поэтому Sбок = 2(3 + 4) · 6 = 2 · 7 · 6 = 84 (cм²).
Площадь полной поверхности призмы находят по формуле
Sполн = 2Sосн + Sбок.
В случае, если в основании лежит параллелограмм, то не хватает данных для нахождения площади параллелограмма.
Если же в основании лежит прямоугольник, то Sосн = ab, где a и b - его стороны.
Поэтому Sполн = 2 · 3 · 4 + 84 = 24 + 84 = 108 (см²).
Первый признак равенства треугольников:
"Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны." (по двум сторонам и углу между ними)
Второй признак равенства треугольников:
"Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны". (по стороне и двум прилежащим к ней углам)
Третий признак равенства треугольников:
"Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны." (по трем сторонам)
Вертикальные углы равны.
В 4)нет обозначений,в 5) есть только один угол и одна сторона,а этого недостаточно для равенства,6) Второй признак равенства прямоугольных треугольников-по катету и остому углу, 12)по второму признаку равенства треугольников(по стороне и двум углам) или по второму признаку равенства прямоугольных треугольников (по катету и острому углу)