ИЛИ Красный сегмент подобен синему (по равенству углов). Отношение площадей подобных фигур равно квадрату коэффициента подобия. Коэф. подобия в данном случае равен отношению стороны квадрата к его диагонали, то есть √2. Следовательно, площадь синего сегмента в 2 раза больше площади красного. "Цветок" состоит из 8 красных сегментов. "Внешняя часть" состоит из 4 синих сегментов. Равенство площадей очевидно.
1)Длины сторон треугольника равны a, b, c. между этими числами имеется закономерность: a2 =b2+c2+bc. Чему равен угол, лежащий против стороны a ? Решение: Пусть против стороны а лежит угол А. По теореме косинусов а2=b2+c2-2bc*cosA По условию a2=b2+c2+bc. Значит bc=-2bc*cosA. Отсюда cosA=-1/2. A=120 2)Найдите длину стороны AC треугольника ABC, где угол B тупой, AB=13, BC=2, sinB=5/13 Решение: По теореме косинусов AC2=AB2+BC2-2*AB*BC*cosBcos2B=1-sin2B=1-25/169=144/169 Так как по условию угол В - тупой, то cosB=-12/13 Далее подставляем известные значения в формулу теоремы косинусов:AC2= 132+22-2*13*2*(-12/13)=221 Следовательно, AC=√221
S= r^2(пa/180° -sina)/2
Площадь красного сегмента (Sк):
r1= x/2 (половина стороны квадрата)
a2=90°
Sк= (x/2)^2 *(п*90°/180° -sin90°)/2 =x^2(п/2 -1)/8
Sцветка= 8Sк =x^2(п/2 -1)
Площадь синего сегмента (Sс):
r2= x√2/2 (половина диагонали квадрата)
a2=90°
Sс= (x√2/2)^2 *(п*90°/180° -sin90°)/2 =x^2(п/2 -1)/4
Sвнешней_части= 4Sс =x^2(п/2 -1) =Sцветка
ИЛИ
Красный сегмент подобен синему (по равенству углов). Отношение площадей подобных фигур равно квадрату коэффициента подобия. Коэф. подобия в данном случае равен отношению стороны квадрата к его диагонали, то есть √2. Следовательно, площадь синего сегмента в 2 раза больше площади красного. "Цветок" состоит из 8 красных сегментов. "Внешняя часть" состоит из 4 синих сегментов. Равенство площадей очевидно.
Решение:
Пусть против стороны а лежит угол А. По теореме косинусов а2=b2+c2-2bc*cosA
По условию a2=b2+c2+bc.
Значит bc=-2bc*cosA.
Отсюда cosA=-1/2. A=120
2)Найдите длину стороны AC треугольника ABC, где угол B тупой, AB=13, BC=2, sinB=5/13
Решение:
По теореме косинусов AC2=AB2+BC2-2*AB*BC*cosBcos2B=1-sin2B=1-25/169=144/169
Так как по условию угол В - тупой, то cosB=-12/13
Далее подставляем известные значения в формулу теоремы косинусов:AC2= 132+22-2*13*2*(-12/13)=221
Следовательно, AC=√221