1. 1) любые две точки всегда принадлежат прямой, т.к. через две различные точки можно провести одну и только одну прямую, а уж если две точки сливаются в одну - и тем более.
2) Любые три точки всегда лежат в одной плоскости, поскольку через три точки, не лежащие на одной прямой, можно провести плоскость, и притом только одну, если же они находятся на одной прямой, то через них можно провести бесчисленное множество плоскостей, и выбрать одну, в которой лежат эти точки, а вот четвертую точку можно положить в плоскость, или "подвесить" в пространство, т.е. ответ на этот вопрос НЕТ. т.к. не всегда.
2. Если две различные плоскости имеют общую точку, то они пересекаются по ПРЯМОЙ, проходящей через эту точку. т.е. общих не только одна, а все, лежащие на прямой. ответ НЕТ.
3. Нет. Т.к. не всегда третью можно положить на ту же плоскость, даже если они все три пересекаются. Нарисуйте две пересекающиеся прямые, они всегда лежат в одной плоскости и проведите прямую, которая проходит через точку пересечения, перпендикулярно двум данным, т.е. плоскости. Ясно, что эта третья прямая не лежит в данной плоскости.
4.1) Прямая, имеющая только одну общую точку с окружностью, так и называется касательной к окружности, если речь о плоскости.
2) если речь о пространстве, то та прямая, которая перпендикулярна радиусу, будет касательной, если же прямаЯ, проходящая через эту единственную точку, не перпендикулярна радиусу, касательной к окружности она не будет. Поэтому здесь ответ нет.
Дана прямоугольная трапеция с тупым углом 150° и площадью 150 см².
Примем радиус искомой вписанной окружности за r.
Находим верхнее основание b.
b = r + (r*tg (180° - 150°)/2) = r + r*tg 15° = r(1 + tg 15°).
Тангенс половинного угла
tan α /2 = ± √ ((1 − cos α) /(1 + сos α )) = sin α /(1 + cos α ) =
= (1 − cos α )/sin α
Находим tg 15° = (1 -(√3/2))/(1/2) = 2 - √3.
Тогда b = r(1 + 2 - √3) = r(3 - √3).
Так как высота трапеции равна 2r, то нижнее основание с равно:
с = b + (2r/tg 30°) = r(3 - √3) + (2r/(1/√3)) = r(3 - √3 + 2√3) = r(3 + √3).
На основе формулы площади трапеции составляем уравнение:
2r*((r(3 - √3) + r(3 + √3))/2) = 150.
Получаем r²*6 = 150, откуда r = √(150/6) = √25 = 5 ед.
ответ: r = 5 ед.
1. 1) любые две точки всегда принадлежат прямой, т.к. через две различные точки можно провести одну и только одну прямую, а уж если две точки сливаются в одну - и тем более.
2) Любые три точки всегда лежат в одной плоскости, поскольку через три точки, не лежащие на одной прямой, можно провести плоскость, и притом только одну, если же они находятся на одной прямой, то через них можно провести бесчисленное множество плоскостей, и выбрать одну, в которой лежат эти точки, а вот четвертую точку можно положить в плоскость, или "подвесить" в пространство, т.е. ответ на этот вопрос НЕТ. т.к. не всегда.
2. Если две различные плоскости имеют общую точку, то они пересекаются по ПРЯМОЙ, проходящей через эту точку. т.е. общих не только одна, а все, лежащие на прямой. ответ НЕТ.
3. Нет. Т.к. не всегда третью можно положить на ту же плоскость, даже если они все три пересекаются. Нарисуйте две пересекающиеся прямые, они всегда лежат в одной плоскости и проведите прямую, которая проходит через точку пересечения, перпендикулярно двум данным, т.е. плоскости. Ясно, что эта третья прямая не лежит в данной плоскости.
4.1) Прямая, имеющая только одну общую точку с окружностью, так и называется касательной к окружности, если речь о плоскости.
2) если речь о пространстве, то та прямая, которая перпендикулярна радиусу, будет касательной, если же прямаЯ, проходящая через эту единственную точку, не перпендикулярна радиусу, касательной к окружности она не будет. Поэтому здесь ответ нет.