Решите . прямые ав и сд пересекаются в точке е, так что се=ев, угол с равен углу в; ак и ад - биссектрисы треугольников асе и две соответственно. докажите, что ак=дм
Решу пока что первую задачу. Нам дан треугольник АБС, известен угол, чтобы найти сторону, нам нужно найти углы. Синус альфа равен 15/17, это приблизительно 0,8823, в таблице Брадиса это значение угла равно 61 градус, значит синус альфа равен 61 градус. Теперь найдем угол Б, 180-(61+90)=29 градусов. Угол Бетта равен 29 градусов. Он острый.
Теперь нам известны все углы. Сторону ВС мы найдем по теореме синуса.
а/синусА=б/синусБ;
Итого, по пропорции, найдем сторону ВС(или маленькой буквой "а");
1) В правильном шестиугольнике все стороны равны.
P₆ = 6a₆,
где а₆ - сторона шестиугольника.
6а₆ = 48
а₆ = 8 м
Радиус окружности, описанной около правильного шестиугольника, равен его стороне:
R = a₆ = 6 м
Эта же окружность описана около квадрата.
Радиус окружности, описанной около квадрата:
R = a₄√2 / 2
6 = a₄ √2 / 2
a₄ = 12 / √2 = 6√2 м
2) Шестиугольник диагоналями делится на 6 равных равносторонних треугольников, так как центральный угол его равен 360°/6 = 60°.
Площадь одного треугольника:
S = a²√3/4 = 72√3 / 6
a²√3/4 = 12√3
a² = 48
a = 4√3 см - сторона шестиугольника.
Радиус окружности, описанной около правильного шестиугольника, равен его стороне:
R = a = 4√3 см
Длина окружности:
C = 2πR = 2π · 4√3 = 8π√3 см
Решу пока что первую задачу. Нам дан треугольник АБС, известен угол, чтобы найти сторону, нам нужно найти углы. Синус альфа равен 15/17, это приблизительно 0,8823, в таблице Брадиса это значение угла равно 61 градус, значит синус альфа равен 61 градус. Теперь найдем угол Б, 180-(61+90)=29 градусов. Угол Бетта равен 29 градусов. Он острый.
Теперь нам известны все углы. Сторону ВС мы найдем по теореме синуса.
а/синусА=б/синусБ;
Итого, по пропорции, найдем сторону ВС(или маленькой буквой "а");
а=8*синус61градус/синус90градус.
8*0,8823/1,000=7,1
ответ:Сторона ВС равна приблизительно 7,1.