Это правило треугольника сложения векторов: Видим что конец первого вектора совпадает с началом второго. Значит результатом сложения будет вектор, обозначенный первой буквой первого вектора и второй буквой другого вектора:
АВ + ВD = AD, AC + CD = AD
Видим, что результаты сложения совпадают, что и требовалось доказать.
Аналогично и во втором примере:
AB + BC = AC, AD + DC = АС, что и треб. доказать.
АВСD - параллелограмм
1. CA = СВ + ВА = CD + DA
2. DA = DC + CA = DB + BA
1. вектор AB + вектор BC = AC
2. вектор MN + вектор NN = MN
3. вектор PQ+ вектор QR = PR
4.вектор EF + вектор DE = DE + EF = DF
выразите вектор BC через векторы AB и AC:
BC = AC - AB
взята точка D на стороне треугольника ABC. Выразите вектор BD через векторы AB и AD:
Объяснение:
1. вектор AB + вектор BD= вектор AC + вектор CD
2. вектор AB + вектор BC= вектор AD + вектор DC
Это правило треугольника сложения векторов: Видим что конец первого вектора совпадает с началом второго. Значит результатом сложения будет вектор, обозначенный первой буквой первого вектора и второй буквой другого вектора:
АВ + ВD = AD, AC + CD = AD
Видим, что результаты сложения совпадают, что и требовалось доказать.
Аналогично и во втором примере:
AB + BC = AC, AD + DC = АС, что и треб. доказать.
АВСD - параллелограмм
1. CA = СВ + ВА = CD + DA
2. DA = DC + CA = DB + BA
1. вектор AB + вектор BC = AC
2. вектор MN + вектор NN = MN
3. вектор PQ+ вектор QR = PR
4.вектор EF + вектор DE = DE + EF = DF
выразите вектор BC через векторы AB и AC:
BC = AC - AB
взята точка D на стороне треугольника ABC. Выразите вектор BD через векторы AB и AD:
BD = AD - AB
Дан параллелограмм ABCD. Найдите разность:
1. вектор AB- вектор AC = CB
2. вектор BC - вектор CD = AB+BC = AC
Построено сечение с учётом расположения линий в каждой плоскости.
Длины линий сечения.
AE = √(8² + 4²) = √(64 + 16) = √80 = 4√5.
Длину В1К находим из пропорции (В1К/8 = (8/(8+4)),
отсюда В1К = (8*8)/12 = 16/3.
Тогда ЕК = √(4² + (16/3)²) = √(400/9) = 20/3.
KP = √((8 - (16/3))² + 4²) = √(208/9) = (4/3)√13.
Длину СТ находим из пропорции.
Так как СМ = КС1 = 8 / (16/3) = 8/3, то СМ/СТ = (ВМ/АВ.
Подставим данные. (8/3)/СТ = (8 + (8/3)/8. Получаем СТ = 2.
РТ = √(4² + 2²) = √20 = 2√5.
ДТ = 8 - 2 = 6.
АТ = √(8² + 6²) = 10.
ответ: Р = 4√5 + (20/3) + ((4/3)√13) + (2√5) + 10 =
= 6√5 + (20/3) + ((4/3)√13) + 10.